SECURE: Benchmarking Large Language Models for Cybersecurity
- URL: http://arxiv.org/abs/2405.20441v4
- Date: Wed, 30 Oct 2024 14:29:37 GMT
- Title: SECURE: Benchmarking Large Language Models for Cybersecurity
- Authors: Dipkamal Bhusal, Md Tanvirul Alam, Le Nguyen, Ashim Mahara, Zachary Lightcap, Rodney Frazier, Romy Fieblinger, Grace Long Torales, Benjamin A. Blakely, Nidhi Rastogi,
- Abstract summary: Large Language Models (LLMs) have demonstrated potential in cybersecurity applications but have also caused lower confidence due to problems like hallucinations and a lack of truthfulness.
Our study evaluates seven state-of-the-art models on these tasks, providing insights into their strengths and weaknesses in cybersecurity contexts.
- Score: 0.6741087029030101
- License:
- Abstract: Large Language Models (LLMs) have demonstrated potential in cybersecurity applications but have also caused lower confidence due to problems like hallucinations and a lack of truthfulness. Existing benchmarks provide general evaluations but do not sufficiently address the practical and applied aspects of LLM performance in cybersecurity-specific tasks. To address this gap, we introduce the SECURE (Security Extraction, Understanding \& Reasoning Evaluation), a benchmark designed to assess LLMs performance in realistic cybersecurity scenarios. SECURE includes six datasets focussed on the Industrial Control System sector to evaluate knowledge extraction, understanding, and reasoning based on industry-standard sources. Our study evaluates seven state-of-the-art models on these tasks, providing insights into their strengths and weaknesses in cybersecurity contexts, and offer recommendations for improving LLMs reliability as cyber advisory tools.
Related papers
- Internal Activation as the Polar Star for Steering Unsafe LLM Behavior [50.463399903987245]
We introduce SafeSwitch, a framework that dynamically regulates unsafe outputs by monitoring and utilizing the model's internal states.
Our empirical results show that SafeSwitch reduces harmful outputs by over 80% on safety benchmarks while maintaining strong utility.
arXiv Detail & Related papers (2025-02-03T04:23:33Z) - LLM Cyber Evaluations Don't Capture Real-World Risk [0.0]
Large language models (LLMs) are demonstrating increasing prowess in cybersecurity applications.
We argue that current efforts to evaluate risks posed by these capabilities are misaligned with the goal of understanding real-world impact.
arXiv Detail & Related papers (2025-01-31T05:33:48Z) - ChatNVD: Advancing Cybersecurity Vulnerability Assessment with Large Language Models [0.46873264197900916]
This paper explores the potential application of Large Language Models (LLMs) to enhance the assessment of software vulnerabilities.
We develop three variants of ChatNVD, utilizing three prominent LLMs: GPT-4o mini by OpenAI, Llama 3 by Meta, and Gemini 1.5 Pro by Google.
To evaluate their efficacy, we conduct a comparative analysis of these models using a comprehensive questionnaire comprising common security vulnerability questions.
arXiv Detail & Related papers (2024-12-06T03:45:49Z) - SafeBench: A Safety Evaluation Framework for Multimodal Large Language Models [75.67623347512368]
We propose toolns, a comprehensive framework designed for conducting safety evaluations of MLLMs.
Our framework consists of a comprehensive harmful query dataset and an automated evaluation protocol.
Based on our framework, we conducted large-scale experiments on 15 widely-used open-source MLLMs and 6 commercial MLLMs.
arXiv Detail & Related papers (2024-10-24T17:14:40Z) - CTIBench: A Benchmark for Evaluating LLMs in Cyber Threat Intelligence [0.7499722271664147]
CTIBench is a benchmark designed to assess Large Language Models' performance in CTI applications.
Our evaluation of several state-of-the-art models on these tasks provides insights into their strengths and weaknesses in CTI contexts.
arXiv Detail & Related papers (2024-06-11T16:42:02Z) - Ollabench: Evaluating LLMs' Reasoning for Human-centric Interdependent Cybersecurity [0.0]
Large Language Models (LLMs) have the potential to enhance Agent-Based Modeling by better representing complex interdependent cybersecurity systems.
Existing evaluation frameworks often overlook the human factor and cognitive computing capabilities essential for interdependent cybersecurity.
I propose OllaBench, a novel evaluation framework that assesses LLMs' accuracy, wastefulness, and consistency in answering scenario-based information security compliance and non-compliance questions.
arXiv Detail & Related papers (2024-06-11T00:35:39Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
Open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress.
Our investigation exposes a critical oversight in this belief.
By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions.
arXiv Detail & Related papers (2024-04-16T13:22:54Z) - Data Poisoning for In-context Learning [49.77204165250528]
In-context learning (ICL) has been recognized for its innovative ability to adapt to new tasks.
This paper delves into the critical issue of ICL's susceptibility to data poisoning attacks.
We introduce ICLPoison, a specialized attacking framework conceived to exploit the learning mechanisms of ICL.
arXiv Detail & Related papers (2024-02-03T14:20:20Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
We introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to assess the risk of such vulnerabilities.
Our analysis identifies two key factors contributing to their success: LLMs' inability to distinguish between informational context and actionable instructions, and their lack of awareness in avoiding the execution of instructions within external content.
We propose two novel defense mechanisms-boundary awareness and explicit reminder-to address these vulnerabilities in both black-box and white-box settings.
arXiv Detail & Related papers (2023-12-21T01:08:39Z) - Purple Llama CyberSecEval: A Secure Coding Benchmark for Language Models [41.068780235482514]
This paper presents CyberSecEval, a comprehensive benchmark developed to help bolster the cybersecurity of Large Language Models (LLMs) employed as coding assistants.
CyberSecEval provides a thorough evaluation of LLMs in two crucial security domains: their propensity to generate insecure code and their level of compliance when asked to assist in cyberattacks.
arXiv Detail & Related papers (2023-12-07T22:07:54Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
Large language models (LLMs) may generate insulting and discriminatory content, reflect incorrect social values, and may be used for malicious purposes.
To promote the deployment of safe, responsible, and ethical AI, we release SafetyPrompts including 100k augmented prompts and responses by LLMs.
arXiv Detail & Related papers (2023-04-20T16:27:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.