Physics-Informed Convolutional Autoencoder for Cyber Anomaly Detection
in Power Distribution Grids
- URL: http://arxiv.org/abs/2312.04758v1
- Date: Fri, 8 Dec 2023 00:05:13 GMT
- Title: Physics-Informed Convolutional Autoencoder for Cyber Anomaly Detection
in Power Distribution Grids
- Authors: Mehdi Jabbari Zideh, Sarika Khushalani Solanki
- Abstract summary: This paper proposes a physics-informed convolutional autoencoder (PIConvAE) to detect stealthy cyber-attacks in power distribution grids.
The proposed model integrates the physical principles into the loss function of the neural network by applying Kirchhoff's law.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing trend toward the modernization of power distribution systems has
facilitated the installation of advanced measurement units and promotion of the
cyber communication systems. However, these infrastructures are still prone to
stealth cyber attacks. The existing data-driven anomaly detection methods
suffer from a lack of knowledge about the system's physics, lack of
interpretability, and scalability issues hindering their practical applications
in real-world scenarios. To address these concerns, physics-informed neural
networks (PINNs) were introduced. This paper proposes a multivariate
physics-informed convolutional autoencoder (PIConvAE) to detect stealthy
cyber-attacks in power distribution grids. The proposed model integrates the
physical principles into the loss function of the neural network by applying
Kirchhoff's law. Simulations are performed on the modified IEEE 13-bus and
123-bus systems using OpenDSS software to validate the efficacy of the proposed
model for stealth attacks. The numerical results prove the superior performance
of the proposed PIConvAE in three aspects: a) it provides more accurate results
compared to the data-driven ConvAE model, b) it requires less training time to
converge c) the model excels in effectively detecting a wide range of attack
magnitudes making it powerful in detecting stealth attacks.
Related papers
- Multivariate Physics-Informed Convolutional Autoencoder for Anomaly Detection in Power Distribution Systems with High Penetration of DERs [0.0]
This paper proposes a physics-informed convolutional autoencoder (PIConvAE) model to detect cyber anomalies in power distribution systems with unbalanced configurations and high penetration of DERs.
The performance of the proposed model is evaluated on two unbalanced power distribution grids, IEEE 123-bus system and a real-world feeder in Riverside, CA.
arXiv Detail & Related papers (2024-06-05T04:28:57Z) - An Unsupervised Adversarial Autoencoder for Cyber Attack Detection in Power Distribution Grids [0.0]
This paper proposes an unsupervised adversarial autoencoder (AAE) model to detect false data injection attacks (FDIAs) in unbalanced power distribution grids.
The proposed method utilizes long short-term memory (LSTM) in the structure of the autoencoder to capture the temporal dependencies in the time-series measurements.
It is tested on IEEE 13-bus and 123-bus systems with historical meteorological data and historical real-world load data.
arXiv Detail & Related papers (2024-03-31T01:20:01Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - A Variational Autoencoder Framework for Robust, Physics-Informed
Cyberattack Recognition in Industrial Cyber-Physical Systems [2.051548207330147]
We develop a data-driven framework that can be used to detect, diagnose, and localize a type of cyberattack called covert attacks on industrial control systems.
The framework has a hybrid design that combines a variational autoencoder (VAE), a recurrent neural network (RNN), and a Deep Neural Network (DNN)
arXiv Detail & Related papers (2023-10-10T19:07:53Z) - Adaptive Attack Detection in Text Classification: Leveraging Space Exploration Features for Text Sentiment Classification [44.99833362998488]
Adversarial example detection plays a vital role in adaptive cyber defense, especially in the face of rapidly evolving attacks.
We propose a novel approach that leverages the power of BERT (Bidirectional Representations from Transformers) and introduces the concept of Space Exploration Features.
arXiv Detail & Related papers (2023-08-29T23:02:26Z) - Dynamics-aware Adversarial Attack of Adaptive Neural Networks [75.50214601278455]
We investigate the dynamics-aware adversarial attack problem of adaptive neural networks.
We propose a Leaded Gradient Method (LGM) and show the significant effects of the lagged gradient.
Our LGM achieves impressive adversarial attack performance compared with the dynamic-unaware attack methods.
arXiv Detail & Related papers (2022-10-15T01:32:08Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
Real-time and accurate detecting of potential line failures is the first step to mitigating the extreme weather impact and activating emergency controls.
Power balance equations nonlinearity, increased uncertainty in generation during extreme events, and lack of grid observability compromise the efficiency of traditional data-driven failure detection methods.
This paper proposes a Physics-InformEd Line failure Detector (FIELD) that leverages grid topology information to reduce sample and time complexities and improve localization accuracy.
arXiv Detail & Related papers (2022-08-31T18:19:25Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Online Dictionary Learning Based Fault and Cyber Attack Detection for
Power Systems [4.657875410615595]
This paper deals with the event and intrusion detection problem by leveraging a stream data mining classifier.
We first build a dictionary by learning higher-level features from unlabeled data.
Then, the labeled data are represented as sparse linear combinations of learned dictionary atoms.
We capitalize on those sparse codes to train the online classifier along with efficient change detectors.
arXiv Detail & Related papers (2021-08-24T23:17:58Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
We develop a data-driven framework that can be used to detect, diagnose, and localize a type of cyberattack called covert attacks on smart grids.
The framework has a hybrid design that combines an autoencoder, a recurrent neural network (RNN) with a Long-Short-Term-Memory layer, and a Deep Neural Network (DNN)
arXiv Detail & Related papers (2020-09-25T17:48:43Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.