An Unsupervised Adversarial Autoencoder for Cyber Attack Detection in Power Distribution Grids
- URL: http://arxiv.org/abs/2404.02923v1
- Date: Sun, 31 Mar 2024 01:20:01 GMT
- Title: An Unsupervised Adversarial Autoencoder for Cyber Attack Detection in Power Distribution Grids
- Authors: Mehdi Jabbari Zideh, Mohammad Reza Khalghani, Sarika Khushalani Solanki,
- Abstract summary: This paper proposes an unsupervised adversarial autoencoder (AAE) model to detect false data injection attacks (FDIAs) in unbalanced power distribution grids.
The proposed method utilizes long short-term memory (LSTM) in the structure of the autoencoder to capture the temporal dependencies in the time-series measurements.
It is tested on IEEE 13-bus and 123-bus systems with historical meteorological data and historical real-world load data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Detection of cyber attacks in smart power distribution grids with unbalanced configurations poses challenges due to the inherent nonlinear nature of these uncertain and stochastic systems. It originates from the intermittent characteristics of the distributed energy resources (DERs) generation and load variations. Moreover, the unknown behavior of cyber attacks, especially false data injection attacks (FDIAs) in the distribution grids with complex temporal correlations and the limited amount of labeled data increases the vulnerability of the grids and imposes a high risk in the secure and reliable operation of the grids. To address these challenges, this paper proposes an unsupervised adversarial autoencoder (AAE) model to detect FDIAs in unbalanced power distribution grids integrated with DERs, i.e., PV systems and wind generation. The proposed method utilizes long short-term memory (LSTM) in the structure of the autoencoder to capture the temporal dependencies in the time-series measurements and leverages the power of generative adversarial networks (GANs) for better reconstruction of the input data. The advantage of the proposed data-driven model is that it can detect anomalous points for the system operation without reliance on abstract models or mathematical representations. To evaluate the efficacy of the approach, it is tested on IEEE 13-bus and 123-bus systems with historical meteorological data (wind speed, ambient temperature, and solar irradiance) as well as historical real-world load data under three types of data falsification functions. The comparison of the detection results of the proposed model with other unsupervised learning methods verifies its superior performance in detecting cyber attacks in unbalanced power distribution grids.
Related papers
- Multivariate Physics-Informed Convolutional Autoencoder for Anomaly Detection in Power Distribution Systems with High Penetration of DERs [0.0]
This paper proposes a physics-informed convolutional autoencoder (PIConvAE) model to detect cyber anomalies in power distribution systems with unbalanced configurations and high penetration of DERs.
The performance of the proposed model is evaluated on two unbalanced power distribution grids, IEEE 123-bus system and a real-world feeder in Riverside, CA.
arXiv Detail & Related papers (2024-06-05T04:28:57Z) - Physics-Informed Convolutional Autoencoder for Cyber Anomaly Detection
in Power Distribution Grids [0.0]
This paper proposes a physics-informed convolutional autoencoder (PIConvAE) to detect stealthy cyber-attacks in power distribution grids.
The proposed model integrates the physical principles into the loss function of the neural network by applying Kirchhoff's law.
arXiv Detail & Related papers (2023-12-08T00:05:13Z) - Federated Learning Based Distributed Localization of False Data
Injection Attacks on Smart Grids [5.705281336771011]
False data injection attack (FDIA) is one of the classes of attacks that target the smart measurement devices by injecting malicious data.
We propose a federated learning-based scheme combined with a hybrid deep neural network architecture.
We validate the proposed architecture by extensive simulations on the IEEE 57, 118, and 300 bus systems and real electricity load data.
arXiv Detail & Related papers (2023-06-17T20:29:55Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
Real-time and accurate detecting of potential line failures is the first step to mitigating the extreme weather impact and activating emergency controls.
Power balance equations nonlinearity, increased uncertainty in generation during extreme events, and lack of grid observability compromise the efficiency of traditional data-driven failure detection methods.
This paper proposes a Physics-InformEd Line failure Detector (FIELD) that leverages grid topology information to reduce sample and time complexities and improve localization accuracy.
arXiv Detail & Related papers (2022-08-31T18:19:25Z) - TFDPM: Attack detection for cyber-physical systems with diffusion
probabilistic models [10.389972581904999]
We propose TFDPM, a general framework for attack detection tasks in CPSs.
It simultaneously extracts temporal pattern and feature pattern given the historical data.
The noise scheduling network increases the detection speed by three times.
arXiv Detail & Related papers (2021-12-20T13:13:29Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Multi-Source Data Fusion for Cyberattack Detection in Power Systems [1.8914160585516038]
We show that fusing information from multiple data sources can help identify cyber-induced incidents and reduce false positives.
We perform multi-source data fusion for training IDS in a cyber-physical power system testbed.
Results are presented using the proposed data fusion application to infer False Data and Command injection-based Man-in- The-Middle attacks.
arXiv Detail & Related papers (2021-01-18T06:34:45Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.