論文の概要: DiffCMR: Fast Cardiac MRI Reconstruction with Diffusion Probabilistic
Models
- arxiv url: http://arxiv.org/abs/2312.04853v1
- Date: Fri, 8 Dec 2023 06:11:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-11 15:58:09.029427
- Title: DiffCMR: Fast Cardiac MRI Reconstruction with Diffusion Probabilistic
Models
- Title(参考訳): DiffCMR : 拡散確率モデルを用いた高速心臓MRI
- Authors: Tianqi Xiang, Wenjun Yue, Yiqun Lin, Jiewen Yang, Zhenkun Wang,
Xiaomeng Li
- Abstract要約: DiffCMRは、アンダーサンプルMRI画像スライスからコンディショニング信号を知覚し、対応するフルサンプルMRI画像スライスを生成する。
我々は,MICCAI 2023 Cardiac MRI Restruction Challengeデータセットを用いたDiffCMRとT1/T2マッピングタスクの検証を行った。
その結果,本手法は従来の手法をはるかに上回り,最先端の性能を実現していることがわかった。
- 参考スコア(独自算出の注目度): 11.068359534951783
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Performing magnetic resonance imaging (MRI) reconstruction from under-sampled
k-space data can accelerate the procedure to acquire MRI scans and reduce
patients' discomfort. The reconstruction problem is usually formulated as a
denoising task that removes the noise in under-sampled MRI image slices.
Although previous GAN-based methods have achieved good performance in image
denoising, they are difficult to train and require careful tuning of
hyperparameters. In this paper, we propose a novel MRI denoising framework
DiffCMR by leveraging conditional denoising diffusion probabilistic models.
Specifically, DiffCMR perceives conditioning signals from the under-sampled MRI
image slice and generates its corresponding fully-sampled MRI image slice.
During inference, we adopt a multi-round ensembling strategy to stabilize the
performance. We validate DiffCMR with cine reconstruction and T1/T2 mapping
tasks on MICCAI 2023 Cardiac MRI Reconstruction Challenge (CMRxRecon) dataset.
Results show that our method achieves state-of-the-art performance, exceeding
previous methods by a significant margin. Code is available at
https://github.com/xmed-lab/DiffCMR.
- Abstract(参考訳): アンダーサンプリングされたk空間データからMRIを再構成することで、MRIスキャンの取得を加速し、患者の不快感を軽減することができる。
再建問題は、通常、アンダーサンプリングされたMRI画像スライスでノイズを取り除くデノナイジングタスクとして定式化される。
従来のGANベースの手法は画像復調において優れた性能を発揮しているが、訓練は困難であり、ハイパーパラメータの注意深いチューニングが必要である。
本稿では,条件付きデノナイズ拡散確率モデルを利用した新しいMRIデノナイズフレームワークDiffCMRを提案する。
具体的には、DiffCMRは、アンダーサンプルMRI画像スライスからコンディショニング信号を知覚し、対応するフルサンプルMRI画像スライスを生成する。
推論中、我々は性能を安定させるためにマルチラウンドのアンサンブル戦略を採用する。
我々は,MICCAI 2023 Cardiac MRI Reconstruction Challenge (CMRxRecon)データセットを用いたDiffCMRとT1/T2マッピングタスクの検証を行った。
その結果,従来の手法をはるかに超え,最先端の性能を実現することができた。
コードはhttps://github.com/xmed-lab/DiffCMRで入手できる。
関連論文リスト
- LDPM: Towards undersampled MRI reconstruction with MR-VAE and Latent Diffusion Prior [2.3007720628527104]
The Latent Diffusion Prior based undersampled MRI reconstruction (LDPM) method was proposed。
スケジューラモジュールを用いて、再構成したMR画像の品質と忠実度を適切に制御し、バランスをとる。
MRIタスク(MR-VAE)に適応したVAEを探索し、将来のMR関連タスクのバックボーンとして機能する。
論文 参考訳(メタデータ) (2024-11-05T09:51:59Z) - Noise Level Adaptive Diffusion Model for Robust Reconstruction of Accelerated MRI [34.361078452552945]
実世界のMRIは、熱ゆらぎによる固有のノイズを既に含んでいる。
そこで本研究では,Nila-DC (NoIse Level Adaptive Data Consistency) を用いた後方サンプリング手法を提案する。
提案手法は最先端のMRI再構成法を超越し,様々なノイズレベルに対して高い堅牢性を有する。
論文 参考訳(メタデータ) (2024-03-08T12:07:18Z) - Robust MRI Reconstruction by Smoothed Unrolling (SMUG) [17.391075587858058]
SMUG(Smoothed Unrolling)と呼ばれる新しい画像再構成フレームワークを提案する。
SMUGは、ランダムスムーシング(RS)に基づく頑健な学習アプローチを用いて、ディープアンローリングに基づくMRI再構成モデルを前進させる。
我々は,SMUGがMRI再建の堅牢性を向上させることを示し,様々な不安定源のセットについて述べる。
論文 参考訳(メタデータ) (2023-12-12T22:57:14Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
ディープラーニングベースのCMRイメージングアルゴリズムへの関心が高まっている。
ディープラーニング手法は大規模なトレーニングデータセットを必要とする。
このデータセットには300人の被験者のマルチコントラスト、マルチビュー、マルチスライス、マルチコイルCMRイメージングデータが含まれている。
論文 参考訳(メタデータ) (2023-09-19T15:14:42Z) - Denoising Simulated Low-Field MRI (70mT) using Denoising Autoencoders
(DAE) and Cycle-Consistent Generative Adversarial Networks (Cycle-GAN) [68.8204255655161]
高磁場, 高分解能, 高信号-雑音比 (SNR) 磁気共鳴イメージング (MRI) 画像を得るために, GAN (Cycle Consistent Generative Adversarial Network) が実装されている。
Denoising Autoencoder(DAE)とCycle-GANをペアとアンペアのケースで訓練するために画像が使用された。
この研究は、古典的DAEを上回り、低磁場MRI画像を改善することができ、画像ペアを必要としない生成的ディープラーニングモデルの使用を実証する。
論文 参考訳(メタデータ) (2023-07-12T00:01:00Z) - Self-Supervised MRI Reconstruction with Unrolled Diffusion Models [27.143473617162304]
自己監督型拡散再構成モデル(SSDiffRecon)を提案する。
SSDiffReconは、物理駆動処理のためのデータ一貫性ブロックと逆拡散ステップのためのクロスアテンショントランスフォーマーをインターリーブする条件拡散プロセスを表現する。
公開脳MRデータセットを用いた実験は、SSDiffReconの再構築速度と品質の点で、最先端の教師付きベースラインと自己教師付きベースラインに対する優位性を示す。
論文 参考訳(メタデータ) (2023-06-29T03:31:46Z) - DDM$^2$: Self-Supervised Diffusion MRI Denoising with Generative
Diffusion Models [0.3149883354098941]
本稿では,拡散復号化生成モデルを用いたMRIの自己教師付き復号化手法を提案する。
本フレームワークは,統計に基づくデノナイジング理論を拡散モデルに統合し,条件付き生成によるデノナイジングを行う。
論文 参考訳(メタデータ) (2023-02-06T18:56:39Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
本稿では,MRI再構成のためのリカレントトランスモデルである textbfReconFormer を提案する。
高度にアンダーサンプリングされたk空間データから高純度磁気共鳴像を反復的に再構成することができる。
パラメータ効率が向上し,最先端手法よりも大幅に向上したことを示す。
論文 参考訳(メタデータ) (2022-01-23T21:58:19Z) - Reference-based Magnetic Resonance Image Reconstruction Using Texture
Transforme [86.6394254676369]
高速MRI再構成のための新しいテクスチャトランスフォーマーモジュール(TTM)を提案する。
変換器のクエリやキーとしてアンダーサンプルのデータと参照データを定式化する。
提案したTTMは、MRIの再構成手法に積み重ねることで、その性能をさらに向上させることができる。
論文 参考訳(メタデータ) (2021-11-18T03:06:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。