論文の概要: Learning to Break: Knowledge-Enhanced Reasoning in Multi-Agent Debate System
- arxiv url: http://arxiv.org/abs/2312.04854v2
- Date: Thu, 11 Jul 2024 07:28:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 23:37:48.555440
- Title: Learning to Break: Knowledge-Enhanced Reasoning in Multi-Agent Debate System
- Title(参考訳): ブレークする学習:マルチエージェント・ディベートシステムにおける知識強化推論
- Authors: Haotian Wang, Xiyuan Du, Weijiang Yu, Qianglong Chen, Kun Zhu, Zheng Chu, Lian Yan, Yi Guan,
- Abstract要約: マルチエージェント討論システム(MAD)は、真理を追求する人間の議論の過程を模倣する。
様々なエージェントが、限られた知識の背景から、適切に、高度に一貫した認知をさせることは困難である。
本稿では,Underline Knowledge-underlineEnhanced frameworkを用いたUnderlineMulti-underlineAgent UnderlineDebateを提案する。
- 参考スコア(独自算出の注目度): 16.830182915504555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-agent debate system (MAD) imitating the process of human discussion in pursuit of truth, aims to align the correct cognition of different agents for the optimal solution. It is challenging to make various agents perform right and highly consistent cognition due to their limited and different knowledge backgrounds (i.e., cognitive islands), which hinders the search for the optimal solution. To address the challenge, we propose a novel \underline{M}ulti-\underline{A}gent \underline{D}ebate with \underline{K}nowledge-\underline{E}nhanced framework (\textbf{MADKE}) to promote the system to find the solution. First, we involve a shared retrieval knowledge pool in the debate process to solve the problem of limited and different knowledge backgrounds. Then, we propose an adaptive knowledge selection method to guarantee the accuracy and personalization of knowledge. This method allows agents to choose whether to use external knowledge in each conversation round according to their own needs. Our experimental results on six datasets show that our method achieves state-of-the-art results compared to existing single-agent and multi-agent methods. Further analysis reveals that the introduction of retrieval knowledge can help the agent to break cognitive islands in the debate process and effectively improve the consistency and correctness of the model. Moreover, MADKE using Qwen1.5-72B-Chat surpasses GPT-4 by +1.26\% on average in six datasets, which validates that our method can help open-source LLMs achieve or even surpass the performance of GPT-4. Our code is available at \url{https://github.com/FutureForMe/MADKE}.
- Abstract(参考訳): 真理を追求する人間の議論の過程を模倣したマルチエージェント討論システム(MAD)は、最適な解を得るために異なるエージェントの正しい認識を調整することを目的としている。
多様なエージェントが、限られた知識の背景(認知の島々)のために、正しい、高度に一貫した認知をさせることは、最適解の探索を妨げる。
この課題に対処するため,本論文では, 解を見つけるためのシステムを促進するために, \underline{M}ulti-\underline{A}gent \underline{D}ebate with \underline{K}nowledge-\underline{E}nhanced framework (\textbf{MADKE})を提案する。
まず,限定的かつ異なる知識背景の問題を解決するために,議論プロセスにおいて共有検索知識プールが関与する。
そこで我々は,知識の正確性とパーソナライズを保証するための適応的知識選択手法を提案する。
この方法では,各会話ラウンドの外部知識を,それぞれのニーズに応じて選択することができる。
6つのデータセットに対する実験結果から,本手法は既存の単エージェント法やマルチエージェント法と比較して最先端の結果が得られることが示された。
さらに分析した結果, 探索知識の導入は, エージェントが議論の過程で認知島を壊し, モデルの一貫性と正しさを効果的に向上させるのに役立つことがわかった。
さらに,Qwen1.5-72B-Chat を用いたMADKE は GPT-4 を平均 +1.26 % で上回っている。
私たちのコードは \url{https://github.com/FutureForMe/MADKE} で利用可能です。
関連論文リスト
- Improving LLM Reasoning with Multi-Agent Tree-of-Thought Validator Agent [9.439315294704368]
Tree of Thoughts (ToT) 法は複雑な質問応答タスクの推論を改善する可能性を示している。
マルチエージェント推論における重要な制限は、'Reasoner'エージェントによる推論経路の浅い探索である。
ToTをベースとしたReasonerエージェントとThought Validatorエージェントを組み合わせた新しいアプローチを提案する。
提案手法は,GSM8Kデータセットを用いた場合,既存の手法と比較して優れた性能を示す。
論文 参考訳(メタデータ) (2024-09-17T19:54:37Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStarは、大言語モデルの純粋に推論に基づく探索手法である。
推論タスクを探索問題として定式化し、最適な推論経路を特定するための2つの探索アイデアを提案する。
Llama-2-13BやMistral-7Bのようなオープンソースモデルの推論能力を大幅に向上させ、GPT-3.5やGrok-1に匹敵する性能を実現している。
論文 参考訳(メタデータ) (2024-05-25T15:07:33Z) - CoMM: Collaborative Multi-Agent, Multi-Reasoning-Path Prompting for Complex Problem Solving [9.446546965008249]
協調型マルチエージェント・マルチレゾニングパス(CoMM)プロンプトフレームワークを提案する。
具体的には、LLMが問題解決チームで異なる役割を演じるように促し、異なるロールプレイエージェントが目的のタスクを協調的に解決するように促します。
2つの大学レベルの科学問題に対する提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-04-26T23:29:12Z) - CAUS: A Dataset for Question Generation based on Human Cognition Leveraging Large Language Models [4.962252439662465]
本稿では,Curious About Uncertain Sceneデータセットを導入し,大規模言語モデルを用いて人間の認知過程をエミュレートし,不確実性を解決する。
我々のアプローチは、推論とクエリの生成を刺激するために、不確実性に埋め込まれたシーン記述を提供することである。
以上の結果から, GPT-4は, 適切な文脈や指示が与えられた場合に, 適切な質問を効果的に生成し, そのニュアンスを把握できることが示唆された。
論文 参考訳(メタデータ) (2024-04-18T01:31:19Z) - Ensembling Prioritized Hybrid Policies for Multi-agent Pathfinding [18.06081009550052]
MARL(Multi-Agent Reinforcement Learning)をベースとしたMAPF(Multi-Agent Path Finding)が最近注目されている。
いくつかのMARL-MAPFメソッドは、あるエージェントが知覚できる情報を豊かにするためにコミュニケーションを使用する。
優先度付きハイブリッドポリシ(EPH)を組み込む新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-12T11:47:12Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
ゼロショットプロンプト最適化により,Large Language Models (LLM) の算術的推論能力を向上させることを目的とする。
このような最適化では、以前見過ごされたクエリ依存の目的を特定します。
本稿では、オフライン逆強化学習を利用して、実演データから洞察を引き出すPrompt-OIRLを紹介する。
論文 参考訳(メタデータ) (2023-09-13T01:12:52Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
複数のエージェントが"tit for tat"の状態で議論を表現するマルチエージェント議論(MAD)フレームワークを提案し、審査員が議論プロセスを管理して最終解を得る。
我々のフレームワークは、深い熟考を必要とするタスクに役立ちそうなLSMにおける散発的思考を奨励する。
論文 参考訳(メタデータ) (2023-05-30T15:25:45Z) - Self-Polish: Enhance Reasoning in Large Language Models via Problem Refinement [50.62461749446111]
Self-Polish(SP)は、与えられた問題を徐々に洗練し、より理解しやすく解けるように誘導することによって、モデルの推論を促進する新しい方法である。
SPは、CoTのような答え/推論サイドの他のすべてのプロンプトメソッドであり、最先端の技術とのシームレスな統合を可能にし、さらなる改善を可能にします。
論文 参考訳(メタデータ) (2023-05-23T19:58:30Z) - Embedding Contextual Information through Reward Shaping in Multi-Agent
Learning: A Case Study from Google Football [0.0]
我々は、報酬関数に文脈情報を埋め込むことで、新たな報酬形成手法を作成する。
Google Research Football (GRF) 環境でこれを実証する。
実験結果から,報奨信号の少ない環境下でのトレーニングエージェントのための最新のMARLアルゴリズムに,報奨形法が有用であることが確認された。
論文 参考訳(メタデータ) (2023-03-25T10:21:13Z) - Retrieval-Augmented Reinforcement Learning [63.32076191982944]
過去の経験のデータセットを最適な行動にマップするために、ネットワークをトレーニングします。
検索プロセスは、現在のコンテキストで有用なデータセットから情報を取得するために訓練される。
検索強化R2D2はベースラインR2D2エージェントよりもかなり高速に学習し,より高いスコアを得ることを示す。
論文 参考訳(メタデータ) (2022-02-17T02:44:05Z) - A Mutual Information Maximization Approach for the Spurious Solution
Problem in Weakly Supervised Question Answering [60.768146126094955]
弱々しい教師付き質問応答は通常、最終的な答えのみを監督信号として持つ。
偶然に正解を導出する刺激的な解が多数存在するかもしれないが、そのような解の訓練はモデルの性能を損なう可能性がある。
本稿では,質問応答対と予測解間の相互情報の最大化により,このような意味的相関を明示的に活用することを提案する。
論文 参考訳(メタデータ) (2021-06-14T05:47:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。