Generating Explanations to Understand and Repair Embedding-based Entity Alignment
- URL: http://arxiv.org/abs/2312.04877v3
- Date: Thu, 21 Mar 2024 07:22:54 GMT
- Title: Generating Explanations to Understand and Repair Embedding-based Entity Alignment
- Authors: Xiaobin Tian, Zequn Sun, Wei Hu,
- Abstract summary: We present the first framework that can generate explanations for understanding and repairing embedding-based EA results.
Given an EA pair produced by an embedding model, we first compare its neighbor entities and relations to build a matching subgraph as a local explanation.
We then construct an alignment dependency graph to understand the pair from an abstract perspective.
- Score: 15.608451451547067
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entity alignment (EA) seeks identical entities in different knowledge graphs, which is a long-standing task in the database research. Recent work leverages deep learning to embed entities in vector space and align them via nearest neighbor search. Although embedding-based EA has gained marked success in recent years, it lacks explanations for alignment decisions. In this paper, we present the first framework that can generate explanations for understanding and repairing embedding-based EA results. Given an EA pair produced by an embedding model, we first compare its neighbor entities and relations to build a matching subgraph as a local explanation. We then construct an alignment dependency graph to understand the pair from an abstract perspective. Finally, we repair the pair by resolving three types of alignment conflicts based on dependency graphs. Experiments on a variety of EA datasets demonstrate the effectiveness, generalization, and robustness of our framework in explaining and repairing embedding-based EA results.
Related papers
- Konstruktor: A Strong Baseline for Simple Knowledge Graph Question Answering [60.6042489577575]
We introduce Konstruktor - an efficient and robust approach that breaks down the problem into three steps.
Our approach integrates language models and knowledge graphs, exploiting the power of the former and the interpretability of the latter.
We show that for relation detection, the most challenging step of the workflow, a combination of relation classification/generation and ranking outperforms other methods.
arXiv Detail & Related papers (2024-09-24T09:19:11Z) - DERA: Dense Entity Retrieval for Entity Alignment in Knowledge Graphs [3.500936203815729]
We propose a dense entity retrieval framework for Entity Alignment (EA)
We leverage language models to uniformly encode various features of entities and facilitate nearest entity search across Knowledge Graphs (KGs)
Our approach achieves state-of-the-art performance compared to existing EA methods.
arXiv Detail & Related papers (2024-08-02T10:12:42Z) - NALA: an Effective and Interpretable Entity Alignment Method [5.891578523646542]
We introduce NALA, an entity alignment method that captures three types of logical inference paths with Non-Axiomatic Logic (NAL)
NALA iteratively aligns entities and relations by integrating the conclusions of the inference paths.
Experimental results show that NALA outperforms state-of-the-art methods in terms of Hits@1, achieving 0.98+ on all three datasets of DBP15K with both supervised and unsupervised settings.
arXiv Detail & Related papers (2024-04-18T07:55:02Z) - Entity Alignment with Unlabeled Dangling Cases [49.86384156476041]
We propose a novel GNN-based dangling detection and entity alignment framework.
While the two tasks share the same GNN, the detected dangling entities are removed in the alignment.
Our framework is featured by a designed entity and relation attention mechanism for selective neighborhood aggregation in representation learning.
arXiv Detail & Related papers (2024-03-16T17:21:58Z) - What Makes Entities Similar? A Similarity Flooding Perspective for
Multi-sourced Knowledge Graph Embeddings [20.100378168629195]
We provide a similarity flooding perspective to explain existing translation-based and aggregation-based EA models.
We prove that the embedding learning process of these models actually seeks a fixpoint of pairwise similarities between entities.
arXiv Detail & Related papers (2023-06-05T06:50:09Z) - EventEA: Benchmarking Entity Alignment for Event-centric Knowledge
Graphs [17.27027602556303]
We show that the progress made in the past was due to biased and unchallenging evaluation.
We construct a new dataset with heterogeneous relations and attributes based on event-centric KGs.
As a new approach to this difficult problem, we propose a time-aware literal encoder for entity alignment.
arXiv Detail & Related papers (2022-11-05T05:34:21Z) - Entailment Tree Explanations via Iterative Retrieval-Generation Reasoner [56.08919422452905]
We propose an architecture called Iterative Retrieval-Generation Reasoner (IRGR)
Our model is able to explain a given hypothesis by systematically generating a step-by-step explanation from textual premises.
We outperform existing benchmarks on premise retrieval and entailment tree generation, with around 300% gain in overall correctness.
arXiv Detail & Related papers (2022-05-18T21:52:11Z) - Entity Alignment For Knowledge Graphs: Progress, Challenges, and
Empirical Studies [4.221619479687067]
Entity alignment (EA) identifies entities across databases that refer to the same entity.
EA methods map entities to a low-dimension space and align them based on their similarities.
This paper presents a comprehensive analysis of various existing EA methods, elaborating their applications and limitations.
arXiv Detail & Related papers (2022-05-18T07:59:03Z) - ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs [73.86041481470261]
Cone Embeddings (ConE) is the first geometry-based query embedding model that can handle conjunction, disjunction, and negation.
ConE significantly outperforms existing state-of-the-art methods on benchmark datasets.
arXiv Detail & Related papers (2021-10-26T14:04:02Z) - Exploring and Evaluating Attributes, Values, and Structures for Entity
Alignment [100.19568734815732]
Entity alignment (EA) aims at building a unified Knowledge Graph (KG) of rich content by linking the equivalent entities from various KGs.
attribute triples can also provide crucial alignment signal but have not been well explored yet.
We propose to utilize an attributed value encoder and partition the KG into subgraphs to model the various types of attribute triples efficiently.
arXiv Detail & Related papers (2020-10-07T08:03:58Z) - HittER: Hierarchical Transformers for Knowledge Graph Embeddings [85.93509934018499]
We propose Hitt to learn representations of entities and relations in a complex knowledge graph.
Experimental results show that Hitt achieves new state-of-the-art results on multiple link prediction.
We additionally propose a simple approach to integrate Hitt into BERT and demonstrate its effectiveness on two Freebase factoid answering datasets.
arXiv Detail & Related papers (2020-08-28T18:58:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.