Konstruktor: A Strong Baseline for Simple Knowledge Graph Question Answering
- URL: http://arxiv.org/abs/2409.15902v1
- Date: Tue, 24 Sep 2024 09:19:11 GMT
- Title: Konstruktor: A Strong Baseline for Simple Knowledge Graph Question Answering
- Authors: Maria Lysyuk, Mikhail Salnikov, Pavel Braslavski, Alexander Panchenko,
- Abstract summary: We introduce Konstruktor - an efficient and robust approach that breaks down the problem into three steps.
Our approach integrates language models and knowledge graphs, exploiting the power of the former and the interpretability of the latter.
We show that for relation detection, the most challenging step of the workflow, a combination of relation classification/generation and ranking outperforms other methods.
- Score: 60.6042489577575
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While being one of the most popular question types, simple questions such as "Who is the author of Cinderella?", are still not completely solved. Surprisingly, even the most powerful modern Large Language Models are prone to errors when dealing with such questions, especially when dealing with rare entities. At the same time, as an answer may be one hop away from the question entity, one can try to develop a method that uses structured knowledge graphs (KGs) to answer such questions. In this paper, we introduce Konstruktor - an efficient and robust approach that breaks down the problem into three steps: (i) entity extraction and entity linking, (ii) relation prediction, and (iii) querying the knowledge graph. Our approach integrates language models and knowledge graphs, exploiting the power of the former and the interpretability of the latter. We experiment with two named entity recognition and entity linking methods and several relation detection techniques. We show that for relation detection, the most challenging step of the workflow, a combination of relation classification/generation and ranking outperforms other methods. We report Konstruktor's strong results on four datasets.
Related papers
- Learning Representations for Reasoning: Generalizing Across Diverse Structures [5.031093893882575]
We aim to push the boundary of reasoning models by devising algorithms that generalize across knowledge and query structures.
Our library treats structured data as first-class citizens and removes the barrier for developing algorithms on structured data.
arXiv Detail & Related papers (2024-10-16T20:23:37Z) - iText2KG: Incremental Knowledge Graphs Construction Using Large Language Models [0.7165255458140439]
iText2KG is a method for incremental, topic-independent Knowledge Graph construction without post-processing.
Our method demonstrates superior performance compared to baseline methods across three scenarios.
arXiv Detail & Related papers (2024-09-05T06:49:14Z) - Graph Reasoning for Question Answering with Triplet Retrieval [33.454090126152714]
We propose a simple yet effective method to retrieve the most relevant triplets from knowledge graphs (KGs)
Our method can outperform state-of-the-art up to 4.6% absolute accuracy.
arXiv Detail & Related papers (2023-05-30T04:46:28Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
Multi-hop Question Answering over Knowledge Graph(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question.
We propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.
arXiv Detail & Related papers (2022-12-02T04:08:09Z) - An Inference Approach To Question Answering Over Knowledge Graphs [7.989723691844202]
We convert the problem of natural language querying over knowledge graphs to an inference problem over premise-hypothesis pairs.
Our method achieves over 90% accuracy on MetaQA dataset, beating the existing state-of-the-art.
Our approach does not require large domain-specific training data for querying on new knowledge graphs from different domains.
arXiv Detail & Related papers (2021-12-21T10:07:55Z) - Learning Relation Prototype from Unlabeled Texts for Long-tail Relation
Extraction [84.64435075778988]
We propose a general approach to learn relation prototypes from unlabeled texts.
We learn relation prototypes as an implicit factor between entities.
We conduct experiments on two publicly available datasets: New York Times and Google Distant Supervision.
arXiv Detail & Related papers (2020-11-27T06:21:12Z) - A Simple Approach to Case-Based Reasoning in Knowledge Bases [56.661396189466664]
We present a surprisingly simple yet accurate approach to reasoning in knowledge graphs (KGs) that requires emphno training, and is reminiscent of case-based reasoning in classical artificial intelligence (AI)
Consider the task of finding a target entity given a source entity and a binary relation.
Our non-parametric approach derives crisp logical rules for each query by finding multiple textitgraph path patterns that connect similar source entities through the given relation.
arXiv Detail & Related papers (2020-06-25T06:28:09Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
In practice, the input knowledge could be more than enough, since the output description may only cover the most significant knowledge.
We introduce a large-scale and challenging dataset to facilitate the study of such a practical scenario in KG-to-text.
We propose a multi-graph structure that is able to represent the original graph information more comprehensively.
arXiv Detail & Related papers (2020-04-30T14:16:19Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.