Distributing long-distance trust in optomechanics
- URL: http://arxiv.org/abs/2312.04935v1
- Date: Fri, 8 Dec 2023 10:04:37 GMT
- Title: Distributing long-distance trust in optomechanics
- Authors: Jamal El Qars
- Abstract summary: Quantum steering displays an inherent asymmetric property that differs from entanglement and Bell nonlocality.
We propose a scheme to generate and manipulate Gaussian quantum steering between two spatially distant mechanical modes.
One-way steering can be achieved and practically manipulated through the lasers drive powers and the temperatures of the cavities.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum steering displays an inherent asymmetric property that differs from
entanglement and Bell nonlocality. Besides being of fundamental interest,
steering is relevant to many asymmetric quantum information tasks. Here, we
propose a scheme to generate and manipulate Gaussian quantum steering between
two spatially distant mechanical modes of two optomechanical cavities coupled
via an optical fiber, and driven by blue detuned lasers. In the unresolved
sideband regime, we show, under realistic experimental conditions, that strong
asymmetric steering can be generated between the two considered modes. Also, we
show that one-way steering can be achieved and practically manipulated through
the lasers drive powers and the temperatures of the cavities. Further, we
reveal that the direction of one-way steering depends on the sign of the
difference between the energies of the mechanical modes. Finally, we discuss
how to access the generated steering. This work opens up new perspectives for
the distribution of long-distance trust which is of great interest in secure
quantum communication.
Related papers
- Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.
We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.
Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - Manipulating the direction of one-way steering in an optomechanical ring cavity [0.0]
Quantum steering refers to the apparent possibility of exploiting nonseparable quantum correlations to remotely influence the quantum state of an observer via local measurements.
Here, we study Gaussian quantum steering between two mechanical modes in an optomechanical ring cavity.
We show that the state of the two considered modes can exhibit two-way steering and even one-way steering.
arXiv Detail & Related papers (2024-03-25T00:44:56Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Enhanced entanglement and controlling quantum steering in a
Laguerre-Gaussian cavity optomechanical system with two rotating mirrors [1.705680323693919]
We present an efficient theoretical scheme for controlling quantum steering and enhancing entanglement in a Laguerre-Gaussian rotating cavity optomechanical system.
In addition to bipartite entanglement, we achieve mirror-cavity-mirror tripartite entanglement.
For two rotating mirrors, quantum steering is found to be asymmetric both one-way and two-way.
arXiv Detail & Related papers (2023-03-12T15:10:31Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - Coherent control of a symmetry-engineered multi-qubit dark state in
waveguide quantum electrodynamics [0.0]
Quantum electrodynamics studies qubits coupled to a mode continuum, exposing them to a loss channel and causing quantum information to be lost before coherent operations can be performed.
Here we restore coherence by realizing a dark state that exploits symmetry properties and interactions between four qubits.
Our experiment paves the way for implementations of quantum many-body physics in waveguides and the realization of quantum information protocols using decoherence-free subspaces.
arXiv Detail & Related papers (2021-06-10T10:06:23Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Enhanced entanglement and asymmetric EPR steering between magnons [0.0]
We study the entanglement and EPR steering between two macroscopic magnons in a hybrid ferrimagnet-light system.
In the presence of the cavity field, the entanglement can be significantly enhanced, and strong two-way asymmetric quantum steering appears between two magnons with equal dispassion.
Our finding may provide a novel platform to manipulate the quantum steering and the detection of bi-party steering provides a knob to probe the magnetic damping on each sublattice of a magnet.
arXiv Detail & Related papers (2020-05-23T04:47:05Z) - Cat states in a driven superfluid: role of signal shape and switching
protocol [62.997667081978825]
We investigate the behavior of a one-dimensional Bose-Hubbard model whose kinetic energy is made to oscillate with zero time-average.
We analyze the robustness of this unconventional ground state against variations of a number of system parameters.
arXiv Detail & Related papers (2020-05-11T15:15:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.