Enhanced optomechanical interaction in the unbalanced interferometer
- URL: http://arxiv.org/abs/2305.06831v1
- Date: Thu, 11 May 2023 14:24:34 GMT
- Title: Enhanced optomechanical interaction in the unbalanced interferometer
- Authors: Alexandr Karpenko (1), Mikhail Korobko (2), Sergey P. Vyatchanin (1
and 3) ((1) Faculty of Physics, M.V. Lomonosov Moscow State University,
Moscow, Russia, (2) Institut fur Laserphysik, Zentrum fur Optische
Quantentechnologien, Universitat Hamburg, Hamburg, Germany, (3) Quantum
Technology Centre, M.V. Lomonosov Moscow State University, Moscow, Russia)
- Abstract summary: Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
- Score: 40.96261204117952
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum optomechanical systems enable the study of fundamental questions on
quantum nature of massive objects. For that a strong coupling between light and
mechanical motion is required, which presents a challenge for massive objects.
In particular large interferometric sensors with low frequency oscillators are
difficult to bring into quantum regime. Here we propose a modification of the
Michelson-Sagnac interferometer, which allows to boost the optomechanical
coupling strength. This is done by unbalancing the central beam-splitter of the
interferometer, allowing to balance two types of optomechanical coupling
present in the system: dissipative and dispersive. We analyse two different
configurations, when the optomechanical cavity is formed by the mirror for the
laser pump field (power-recycling), and by the mirror for the signal field
(signal-recycling). We show that the imbalance of the beam splitter allows to
dramatically increase the optical cooling of the test mass motion. We also
formulate the conditions for observing quantum radiation-pressure noise and
ponderomotive squeezing. Our configuration can serve as the basis for more
complex modifications of the interferometer that would utilize the enhanced
coupling strength. This will allow to efficiently reach quantum state of large
test masses, opening the way to studying fundamental aspects of quantum
mechanics and experimental search for quantum gravity.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Experimental Observation of Earth's Rotation with Quantum Entanglement [0.0]
We present a table-top experiment using maximally path-entangled quantum states of light in an interferometer with an area of 715 m$2$.
The achieved sensitivity of 5 $mu$rad/s constitutes the highest rotation resolution ever achieved with optical quantum interferometers.
arXiv Detail & Related papers (2023-10-25T18:01:23Z) - Exploring quantum correlations in a hybrid optomechanical system [0.0]
We propose a scheme of two coupled optomechanical cavities to enhance the intracavity entanglement.
Photon hopping is employed to establish couplings between optical modes, while phonon is utilized to establish couplings between mechanical tunneling resonators.
arXiv Detail & Related papers (2022-04-16T08:47:50Z) - Can the displacemon device test objective collapse models? [0.0]
"Displacemon" is a proposed electromechanical device consisting of a mechanical resonator flux-coupled to a superconducting qubit.
In the original proposal, the mechanical resonator was a carbon nanotube, containing $106$ nucleons.
We propose using an aluminium mechanical resonator on two larger mass scales, one inspired by the Marshall-Simon-Penrose-Bouwmeester moving-mirror proposal, and one set by the Planck mass.
arXiv Detail & Related papers (2021-10-28T14:56:30Z) - Parity measurement in the strong dispersive regime of circuit quantum
acoustodynamics [1.7673364730995766]
We show direct measurements of the phonon number distribution and parity of nonclassical mechanical states.
These measurements are some of the basic building blocks for constructing acoustic quantum memories and processors.
Our results open the door to performing even more complex quantum algorithms using mechanical systems.
arXiv Detail & Related papers (2021-10-01T08:40:26Z) - Strong angular momentum optomechanical coupling for macroscopic quantum
control [5.693393434312775]
We propose a quantum optomechanical system involving exchange interaction between spin angular momentum of light and a torsional oscillator.
We demonstrate that this system allows coherent control of the torsional quantum state of a torsional oscillator on the single photon level.
Our work provides a platform to verify the validity of quantum mechanics in macroscopic systems on the micrometer and even centimeter scale.
arXiv Detail & Related papers (2021-09-29T03:18:48Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.