NewMove: Customizing text-to-video models with novel motions
- URL: http://arxiv.org/abs/2312.04966v2
- Date: Tue, 10 Dec 2024 07:00:16 GMT
- Title: NewMove: Customizing text-to-video models with novel motions
- Authors: Joanna Materzynska, Josef Sivic, Eli Shechtman, Antonio Torralba, Richard Zhang, Bryan Russell,
- Abstract summary: We introduce an approach for augmenting text-to-video generation models with customized motions.
By leveraging a few video samples demonstrating specific movements as input, our method learns and generalizes the input motion patterns for diverse, text-specified scenarios.
- Score: 74.9442859239997
- License:
- Abstract: We introduce an approach for augmenting text-to-video generation models with customized motions, extending their capabilities beyond the motions depicted in the original training data. By leveraging a few video samples demonstrating specific movements as input, our method learns and generalizes the input motion patterns for diverse, text-specified scenarios. Our contributions are threefold. First, to achieve our results, we finetune an existing text-to-video model to learn a novel mapping between the depicted motion in the input examples to a new unique token. To avoid overfitting to the new custom motion, we introduce an approach for regularization over videos. Second, by leveraging the motion priors in a pretrained model, our method can produce novel videos featuring multiple people doing the custom motion, and can invoke the motion in combination with other motions. Furthermore, our approach extends to the multimodal customization of motion and appearance of individualized subjects, enabling the generation of videos featuring unique characters and distinct motions. Third, to validate our method, we introduce an approach for quantitatively evaluating the learned custom motion and perform a systematic ablation study. We show that our method significantly outperforms prior appearance-based customization approaches when extended to the motion customization task.
Related papers
- Separate Motion from Appearance: Customizing Motion via Customizing Text-to-Video Diffusion Models [18.41701130228042]
Motion customization aims to adapt the diffusion model (DM) to generate videos with the motion specified by a set of video clips with the same motion concept.
This paper proposes two novel strategies to enhance motion-appearance separation, including temporal attention purification (TAP) and appearance highway (AH)
arXiv Detail & Related papers (2025-01-28T05:40:20Z) - Move-in-2D: 2D-Conditioned Human Motion Generation [54.067588636155115]
We propose Move-in-2D, a novel approach to generate human motion sequences conditioned on a scene image.
Our approach accepts both a scene image and text prompt as inputs, producing a motion sequence tailored to the scene.
arXiv Detail & Related papers (2024-12-17T18:58:07Z) - MoTrans: Customized Motion Transfer with Text-driven Video Diffusion Models [59.10171699717122]
MoTrans is a customized motion transfer method enabling video generation of similar motion in new context.
multimodal representations from recaptioned prompt and video frames promote the modeling of appearance.
Our method effectively learns specific motion pattern from singular or multiple reference videos.
arXiv Detail & Related papers (2024-12-02T10:07:59Z) - Motion Inversion for Video Customization [31.607669029754874]
We present a novel approach for motion in generation, addressing the widespread gap in the exploration of motion representation within video models.
We introduce Motion Embeddings, a set of explicit, temporally coherent embeddings derived from given video.
Our contributions include a tailored motion embedding for customization tasks and a demonstration of the practical advantages and effectiveness of our method.
arXiv Detail & Related papers (2024-03-29T14:14:22Z) - Animate Your Motion: Turning Still Images into Dynamic Videos [58.63109848837741]
We introduce Scene and Motion Conditional Diffusion (SMCD), a novel methodology for managing multimodal inputs.
SMCD incorporates a recognized motion conditioning module and investigates various approaches to integrate scene conditions.
Our design significantly enhances video quality, motion precision, and semantic coherence.
arXiv Detail & Related papers (2024-03-15T10:36:24Z) - Motion Flow Matching for Human Motion Synthesis and Editing [75.13665467944314]
We propose emphMotion Flow Matching, a novel generative model for human motion generation featuring efficient sampling and effectiveness in motion editing applications.
Our method reduces the sampling complexity from thousand steps in previous diffusion models to just ten steps, while achieving comparable performance in text-to-motion and action-to-motion generation benchmarks.
arXiv Detail & Related papers (2023-12-14T12:57:35Z) - VMC: Video Motion Customization using Temporal Attention Adaption for
Text-to-Video Diffusion Models [58.93124686141781]
Video Motion Customization (VMC) is a novel one-shot tuning approach crafted to adapt temporal attention layers within video diffusion models.
Our approach introduces a novel motion distillation objective using residual vectors between consecutive frames as a motion reference.
We validate our method against state-of-the-art video generative models across diverse real-world motions and contexts.
arXiv Detail & Related papers (2023-12-01T06:50:11Z) - MotionDirector: Motion Customization of Text-to-Video Diffusion Models [24.282240656366714]
Motion Customization aims to adapt existing text-to-video diffusion models to generate videos with customized motion.
We propose MotionDirector, with a dual-path LoRAs architecture to decouple the learning of appearance and motion.
Our method also supports various downstream applications, such as the mixing of different videos with their appearance and motion respectively, and animating a single image with customized motions.
arXiv Detail & Related papers (2023-10-12T16:26:18Z) - Continuous-Time Video Generation via Learning Motion Dynamics with
Neural ODE [26.13198266911874]
We propose a novel video generation approach that learns separate distributions for motion and appearance.
We employ a two-stage approach where the first stage converts a noise vector to a sequence of keypoints in arbitrary frame rates, and the second stage synthesizes videos based on the given keypoints sequence and the appearance noise vector.
arXiv Detail & Related papers (2021-12-21T03:30:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.