Boosting Prompt-Based Self-Training With Mapping-Free Automatic
Verbalizer for Multi-Class Classification
- URL: http://arxiv.org/abs/2312.04982v1
- Date: Fri, 8 Dec 2023 11:43:00 GMT
- Title: Boosting Prompt-Based Self-Training With Mapping-Free Automatic
Verbalizer for Multi-Class Classification
- Authors: Yookyung Kho, Jaehee Kim, Pilsung Kang
- Abstract summary: We introduce a novel, efficient verbalizer structure, named Mapping-free Automatic Verbal Modelingizer (MAV)
MAV serves as a trainable verbalizer that automatically extracts the requisite word features for classification by capitalizing on all available information from predictions.
Experimental results on five multi-class classification datasets indicate MAV's superior self-training efficacy.
- Score: 3.647905567437244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, prompt-based fine-tuning has garnered considerable interest as a
core technique for few-shot text classification task. This approach
reformulates the fine-tuning objective to align with the Masked Language
Modeling (MLM) objective. Leveraging unlabeled data, prompt-based self-training
has shown greater effectiveness in binary and three-class classification.
However, prompt-based self-training for multi-class classification has not been
adequately investigated, despite its significant applicability to real-world
scenarios. Moreover, extending current methods to multi-class classification
suffers from the verbalizer that extracts the predicted value of manually
pre-defined single label word for each class from MLM predictions.
Consequently, we introduce a novel, efficient verbalizer structure, named
Mapping-free Automatic Verbalizer (MAV). Comprising two fully connected layers,
MAV serves as a trainable verbalizer that automatically extracts the requisite
word features for classification by capitalizing on all available information
from MLM predictions. Experimental results on five multi-class classification
datasets indicate MAV's superior self-training efficacy.
Related papers
- RAR: Retrieving And Ranking Augmented MLLMs for Visual Recognition [78.97487780589574]
Multimodal Large Language Models (MLLMs) excel at classifying fine-grained categories.
This paper introduces a Retrieving And Ranking augmented method for MLLMs.
Our proposed approach not only addresses the inherent limitations in fine-grained recognition but also preserves the model's comprehensive knowledge base.
arXiv Detail & Related papers (2024-03-20T17:59:55Z) - RulePrompt: Weakly Supervised Text Classification with Prompting PLMs and Self-Iterative Logical Rules [30.239044569301534]
Weakly supervised text classification (WSTC) has attracted increasing attention due to its applicability in classifying a mass of texts.
We propose a prompting PLM-based approach named RulePrompt for the WSTC task, consisting of a rule mining module and a rule-enhanced pseudo label generation module.
Our approach yields interpretable category rules, proving its advantage in disambiguating easily-confused categories.
arXiv Detail & Related papers (2024-03-05T12:50:36Z) - Automated Machine Learning for Multi-Label Classification [3.2634122554914002]
We devise a novel AutoML approach for single-label classification tasks, consisting of two algorithms at most.
We investigate how well AutoML approaches that form the state of the art for single-label classification tasks scale with the increased problem complexity of AutoML for multi-label classification.
arXiv Detail & Related papers (2024-02-28T09:40:36Z) - Token Prediction as Implicit Classification to Identify LLM-Generated
Text [37.89852204279844]
This paper introduces a novel approach for identifying the possible large language models (LLMs) involved in text generation.
Instead of adding an additional classification layer to a base LM, we reframe the classification task as a next-token prediction task.
We utilize the Text-to-Text Transfer Transformer (T5) model as the backbone for our experiments.
arXiv Detail & Related papers (2023-11-15T06:33:52Z) - Automated Few-shot Classification with Instruction-Finetuned Language
Models [76.69064714392165]
We show that AuT-Few outperforms state-of-the-art few-shot learning methods.
We also show that AuT-Few is the best ranking method across datasets on the RAFT few-shot benchmark.
arXiv Detail & Related papers (2023-05-21T21:50:27Z) - M-Tuning: Prompt Tuning with Mitigated Label Bias in Open-Set Scenarios [103.6153593636399]
We propose a vision-language prompt tuning method with mitigated label bias (M-Tuning)
It introduces open words from the WordNet to extend the range of words forming the prompt texts from only closed-set label words to more, and thus prompts are tuned in a simulated open-set scenario.
Our method achieves the best performance on datasets with various scales, and extensive ablation studies also validate its effectiveness.
arXiv Detail & Related papers (2023-03-09T09:05:47Z) - FastClass: A Time-Efficient Approach to Weakly-Supervised Text
Classification [14.918600168973564]
This paper proposes FastClass, an efficient weakly-supervised classification approach.
It uses dense text representation to retrieve class-relevant documents from external unlabeled corpus.
Experiments show that the proposed approach frequently outperforms keyword-driven models in terms of classification accuracy and often enjoys orders-of-magnitude faster training speed.
arXiv Detail & Related papers (2022-12-11T13:43:22Z) - Revisiting Self-Training for Few-Shot Learning of Language Model [61.173976954360334]
Unlabeled data carry rich task-relevant information, they are proven useful for few-shot learning of language model.
In this work, we revisit the self-training technique for language model fine-tuning and present a state-of-the-art prompt-based few-shot learner, SFLM.
arXiv Detail & Related papers (2021-10-04T08:51:36Z) - Binary Classification from Multiple Unlabeled Datasets via Surrogate Set
Classification [94.55805516167369]
We propose a new approach for binary classification from m U-sets for $mge2$.
Our key idea is to consider an auxiliary classification task called surrogate set classification (SSC)
arXiv Detail & Related papers (2021-02-01T07:36:38Z) - Joint Visual and Temporal Consistency for Unsupervised Domain Adaptive
Person Re-Identification [64.37745443119942]
This paper jointly enforces visual and temporal consistency in the combination of a local one-hot classification and a global multi-class classification.
Experimental results on three large-scale ReID datasets demonstrate the superiority of proposed method in both unsupervised and unsupervised domain adaptive ReID tasks.
arXiv Detail & Related papers (2020-07-21T14:31:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.