IntrinsicAvatar: Physically Based Inverse Rendering of Dynamic Humans from Monocular Videos via Explicit Ray Tracing
- URL: http://arxiv.org/abs/2312.05210v2
- Date: Thu, 11 Jul 2024 16:31:39 GMT
- Title: IntrinsicAvatar: Physically Based Inverse Rendering of Dynamic Humans from Monocular Videos via Explicit Ray Tracing
- Authors: Shaofei Wang, Božidar Antić, Andreas Geiger, Siyu Tang,
- Abstract summary: We present IntrinsicAvatar, a novel approach to recovering the intrinsic properties of clothed human avatars from only monocular videos.
Our approach can recover high-quality geometry, albedo, material, and lighting properties of clothed humans from a single monocular video.
- Score: 30.944495094789826
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present IntrinsicAvatar, a novel approach to recovering the intrinsic properties of clothed human avatars including geometry, albedo, material, and environment lighting from only monocular videos. Recent advancements in human-based neural rendering have enabled high-quality geometry and appearance reconstruction of clothed humans from just monocular videos. However, these methods bake intrinsic properties such as albedo, material, and environment lighting into a single entangled neural representation. On the other hand, only a handful of works tackle the problem of estimating geometry and disentangled appearance properties of clothed humans from monocular videos. They usually achieve limited quality and disentanglement due to approximations of secondary shading effects via learned MLPs. In this work, we propose to model secondary shading effects explicitly via Monte-Carlo ray tracing. We model the rendering process of clothed humans as a volumetric scattering process, and combine ray tracing with body articulation. Our approach can recover high-quality geometry, albedo, material, and lighting properties of clothed humans from a single monocular video, without requiring supervised pre-training using ground truth materials. Furthermore, since we explicitly model the volumetric scattering process and ray tracing, our model naturally generalizes to novel poses, enabling animation of the reconstructed avatar in novel lighting conditions.
Related papers
- NECA: Neural Customizable Human Avatar [36.69012172745299]
We introduce NECA, an approach capable of learning versatile human representation from monocular or sparse-view videos.
The core of our approach is to represent humans in complementary dual spaces and predict disentangled neural fields of geometry, albedo, shadow, as well as an external lighting.
arXiv Detail & Related papers (2024-03-15T14:23:06Z) - Relightable Neural Actor with Intrinsic Decomposition and Pose Control [80.06094206522668]
We propose Relightable Neural Actor, a new video-based method for learning a pose-driven neural human model that can be relighted.
For training, our method solely requires a multi-view recording of the human under a known, but static lighting condition.
To evaluate our approach in real-world scenarios, we collect a new dataset with four identities recorded under different light conditions, indoors and outdoors.
arXiv Detail & Related papers (2023-12-18T14:30:13Z) - NePF: Neural Photon Field for Single-Stage Inverse Rendering [6.977356702921476]
We present a novel single-stage framework, Neural Photon Field (NePF), to address the ill-posed inverse rendering from multi-view images.
NePF achieves this unification by fully utilizing the physical implication behind the weight function of neural implicit surfaces.
We evaluate our method on both real and synthetic datasets.
arXiv Detail & Related papers (2023-11-20T06:15:46Z) - FLARE: Fast Learning of Animatable and Relightable Mesh Avatars [64.48254296523977]
Our goal is to efficiently learn personalized animatable 3D head avatars from videos that are geometrically accurate, realistic, relightable, and compatible with current rendering systems.
We introduce FLARE, a technique that enables the creation of animatable and relightable avatars from a single monocular video.
arXiv Detail & Related papers (2023-10-26T16:13:00Z) - Neural Fields meet Explicit Geometric Representation for Inverse
Rendering of Urban Scenes [62.769186261245416]
We present a novel inverse rendering framework for large urban scenes capable of jointly reconstructing the scene geometry, spatially-varying materials, and HDR lighting from a set of posed RGB images with optional depth.
Specifically, we use a neural field to account for the primary rays, and use an explicit mesh (reconstructed from the underlying neural field) for modeling secondary rays that produce higher-order lighting effects such as cast shadows.
arXiv Detail & Related papers (2023-04-06T17:51:54Z) - RANA: Relightable Articulated Neural Avatars [83.60081895984634]
We propose RANA, a relightable and articulated neural avatar for the photorealistic synthesis of humans.
We present a novel framework to model humans while disentangling their geometry, texture, and also lighting environment from monocular RGB videos.
arXiv Detail & Related papers (2022-12-06T18:59:31Z) - Animatable Neural Radiance Fields from Monocular RGB Video [72.6101766407013]
We present animatable neural radiance fields for detailed human avatar creation from monocular videos.
Our approach extends neural radiance fields to the dynamic scenes with human movements via introducing explicit pose-guided deformation.
In experiments we show that the proposed approach achieves 1) implicit human geometry and appearance reconstruction with high-quality details, 2) photo-realistic rendering of the human from arbitrary views, and 3) animation of the human with arbitrary poses.
arXiv Detail & Related papers (2021-06-25T13:32:23Z) - Neural Actor: Neural Free-view Synthesis of Human Actors with Pose
Control [80.79820002330457]
We propose a new method for high-quality synthesis of humans from arbitrary viewpoints and under arbitrary controllable poses.
Our method achieves better quality than the state-of-the-arts on playback as well as novel pose synthesis, and can even generalize well to new poses that starkly differ from the training poses.
arXiv Detail & Related papers (2021-06-03T17:40:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.