Exploring the Limits of ChatGPT in Software Security Applications
- URL: http://arxiv.org/abs/2312.05275v1
- Date: Fri, 8 Dec 2023 03:02:37 GMT
- Title: Exploring the Limits of ChatGPT in Software Security Applications
- Authors: Fangzhou Wu, Qingzhao Zhang, Ati Priya Bajaj, Tiffany Bao, Ning Zhang,
Ruoyu "Fish" Wang, Chaowei Xiao
- Abstract summary: Large language models (LLMs) have undergone rapid evolution and achieved remarkable results in recent times.
OpenAI's ChatGPT has gained instant popularity due to its strong capability across a wide range of tasks.
- Score: 29.829574588773486
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have undergone rapid evolution and achieved
remarkable results in recent times. OpenAI's ChatGPT, backed by GPT-3.5 or
GPT-4, has gained instant popularity due to its strong capability across a wide
range of tasks, including natural language tasks, coding, mathematics, and
engaging conversations. However, the impacts and limits of such LLMs in system
security domain are less explored. In this paper, we delve into the limits of
LLMs (i.e., ChatGPT) in seven software security applications including
vulnerability detection/repair, debugging, debloating, decompilation, patching,
root cause analysis, symbolic execution, and fuzzing. Our exploration reveals
that ChatGPT not only excels at generating code, which is the conventional
application of language models, but also demonstrates strong capability in
understanding user-provided commands in natural languages, reasoning about
control and data flows within programs, generating complex data structures, and
even decompiling assembly code. Notably, GPT-4 showcases significant
improvements over GPT-3.5 in most security tasks. Also, certain limitations of
ChatGPT in security-related tasks are identified, such as its constrained
ability to process long code contexts.
Related papers
- A Qualitative Study on Using ChatGPT for Software Security: Perception vs. Practicality [1.7624347338410744]
ChatGPT is a Large Language Model (LLM) that can perform a variety of tasks with remarkable semantic understanding and accuracy.
This study aims to gain an understanding of the potential of ChatGPT as an emerging technology for supporting software security.
It was determined that security practitioners view ChatGPT as beneficial for various software security tasks, including vulnerability detection, information retrieval, and penetration testing.
arXiv Detail & Related papers (2024-08-01T10:14:05Z) - CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion [117.178835165855]
This paper introduces CodeAttack, a framework that transforms natural language inputs into code inputs.
Our studies reveal a new and universal safety vulnerability of these models against code input.
We find that a larger distribution gap between CodeAttack and natural language leads to weaker safety generalization.
arXiv Detail & Related papers (2024-03-12T17:55:38Z) - Exploring ChatGPT's Capabilities on Vulnerability Management [56.4403395100589]
We explore ChatGPT's capabilities on 6 tasks involving the complete vulnerability management process with a large-scale dataset containing 70,346 samples.
One notable example is ChatGPT's proficiency in tasks like generating titles for software bug reports.
Our findings reveal the difficulties encountered by ChatGPT and shed light on promising future directions.
arXiv Detail & Related papers (2023-11-11T11:01:13Z) - ChatGPT for Vulnerability Detection, Classification, and Repair: How Far
Are We? [24.61869093475626]
Large language models (LLMs) like ChatGPT exhibited remarkable advancement in a range of software engineering tasks.
We compare ChatGPT with state-of-the-art language models designed for software vulnerability purposes.
We found that ChatGPT achieves limited performance, trailing behind other language models in vulnerability contexts by a significant margin.
arXiv Detail & Related papers (2023-10-15T12:01:35Z) - Multilingual Jailbreak Challenges in Large Language Models [96.74878032417054]
In this study, we reveal the presence of multilingual jailbreak challenges within large language models (LLMs)
We consider two potential risky scenarios: unintentional and intentional.
We propose a novel textscSelf-Defense framework that automatically generates multilingual training data for safety fine-tuning.
arXiv Detail & Related papers (2023-10-10T09:44:06Z) - When ChatGPT Meets Smart Contract Vulnerability Detection: How Far Are We? [34.61179425241671]
We present an empirical study to investigate the performance of ChatGPT in identifying smart contract vulnerabilities.
ChatGPT achieves a high recall rate, but its precision in pinpointing smart contract vulnerabilities is limited.
Our research provides insights into the strengths and weaknesses of employing large language models, specifically ChatGPT, for the detection of smart contract vulnerabilities.
arXiv Detail & Related papers (2023-09-11T15:02:44Z) - Prompt-Enhanced Software Vulnerability Detection Using ChatGPT [9.35868869848051]
Large language models (LLMs) like GPT have received considerable attention due to their stunning intelligence.
This paper launches a study on the performance of software vulnerability detection using ChatGPT with different prompt designs.
arXiv Detail & Related papers (2023-08-24T10:30:33Z) - No Need to Lift a Finger Anymore? Assessing the Quality of Code Generation by ChatGPT [28.68768157452352]
This study examines the quality of code generation using ChatGPT.
We leverage 728 algorithm problems in five languages (i.e., C, C++, Java, Python, and JavaScript) and 18 CWEs with 54 code scenarios for the code generation task.
Our findings uncover potential issues and limitations that arise in the ChatGPT-based code generation.
arXiv Detail & Related papers (2023-08-09T10:01:09Z) - Pushing the Limits of ChatGPT on NLP Tasks [79.17291002710517]
Despite the success of ChatGPT, its performances on most NLP tasks are still well below the supervised baselines.
In this work, we looked into the causes, and discovered that its subpar performance was caused by the following factors.
We propose a collection of general modules to address these issues, in an attempt to push the limits of ChatGPT on NLP tasks.
arXiv Detail & Related papers (2023-06-16T09:40:05Z) - ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large
Language Models in Multilingual Learning [70.57126720079971]
Large language models (LLMs) have emerged as the most important breakthroughs in natural language processing (NLP)
This paper evaluates ChatGPT on 7 different tasks, covering 37 diverse languages with high, medium, low, and extremely low resources.
Compared to the performance of previous models, our extensive experimental results demonstrate a worse performance of ChatGPT for different NLP tasks and languages.
arXiv Detail & Related papers (2023-04-12T05:08:52Z) - A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on
Reasoning, Hallucination, and Interactivity [79.12003701981092]
We carry out an extensive technical evaluation of ChatGPT using 23 data sets covering 8 different common NLP application tasks.
We evaluate the multitask, multilingual and multi-modal aspects of ChatGPT based on these data sets and a newly designed multimodal dataset.
ChatGPT is 63.41% accurate on average in 10 different reasoning categories under logical reasoning, non-textual reasoning, and commonsense reasoning.
arXiv Detail & Related papers (2023-02-08T12:35:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.