MrGuard: A Multilingual Reasoning Guardrail for Universal LLM Safety
- URL: http://arxiv.org/abs/2504.15241v2
- Date: Tue, 20 May 2025 16:49:30 GMT
- Title: MrGuard: A Multilingual Reasoning Guardrail for Universal LLM Safety
- Authors: Yahan Yang, Soham Dan, Shuo Li, Dan Roth, Insup Lee,
- Abstract summary: Large Language Models (LLMs) are susceptible to adversarial attacks such as jailbreaking.<n>This vulnerability is exacerbated in multilingual settings, where multilingual safety-aligned data is often limited.<n>We introduce a multilingual guardrail with reasoning for prompt classification.
- Score: 56.79292318645454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are susceptible to adversarial attacks such as jailbreaking, which can elicit harmful or unsafe behaviors. This vulnerability is exacerbated in multilingual settings, where multilingual safety-aligned data is often limited. Thus, developing a guardrail capable of detecting and filtering unsafe content across diverse languages is critical for deploying LLMs in real-world applications. In this work, we introduce a multilingual guardrail with reasoning for prompt classification. Our method consists of: (1) synthetic multilingual data generation incorporating culturally and linguistically nuanced variants, (2) supervised fine-tuning, and (3) a curriculum-based Group Relative Policy Optimization (GRPO) framework that further improves performance. Experimental results demonstrate that our multilingual guardrail, MrGuard, consistently outperforms recent baselines across both in-domain and out-of-domain languages by more than 15%. We also evaluate MrGuard's robustness to multilingual variations, such as code-switching and low-resource language distractors in the prompt, and demonstrate that it preserves safety judgments under these challenging conditions. The multilingual reasoning capability of our guardrail enables it to generate explanations, which are particularly useful for understanding language-specific risks and ambiguities in multilingual content moderation.
Related papers
- MPO: Multilingual Safety Alignment via Reward Gap Optimization [88.76638442683391]
Large language models (LLMs) have become increasingly central to AI applications worldwide.<n>Existing preference learning methods for safety alignment, such as RLHF and DPO, are primarily monolingual and struggle with noisy multilingual data.<n>We introduce Multilingual reward gaP Optimization (MPO), a novel approach that leverages the well-aligned safety capabilities of the dominant language (English) to improve safety alignment across multiple languages.
arXiv Detail & Related papers (2025-05-22T16:24:51Z) - Multilingual Collaborative Defense for Large Language Models [33.14454771097587]
One notable vulnerability is the ability to bypass safeguards by translating harmful queries into rare or underrepresented languages.<n>Despite the growing concern, there has been limited research addressing the safeguarding of LLMs in multilingual scenarios.<n>We propose Multilingual Collaborative Defense (MCD), a novel learning method that optimize a continuous, soft safety prompt automatically.
arXiv Detail & Related papers (2025-05-17T04:47:16Z) - X-Guard: Multilingual Guard Agent for Content Moderation [8.233872344445675]
X-Guard is a transparent multilingual safety agent designed to provide content moderation across diverse linguistic contexts.<n>Our approach includes curating and enhancing multiple open-source safety datasets with explicit evaluation rationales.<n>Our empirical evaluations demonstrate X-Guard's effectiveness in detecting unsafe content across multiple languages.
arXiv Detail & Related papers (2025-04-11T01:58:06Z) - LLMs Lost in Translation: M-ALERT uncovers Cross-Linguistic Safety Inconsistencies [63.10843814055688]
M-ALERT is a benchmark that evaluates the safety of Large Language Models in five languages.<n>M-ALERT includes 15k high-quality prompts per language, totaling 75k, with category-wise annotations.<n>Our experiments on 39 state-of-the-art LLMs highlight the importance of language-specific safety analysis.
arXiv Detail & Related papers (2024-12-19T16:46:54Z) - Benchmarking LLM Guardrails in Handling Multilingual Toxicity [57.296161186129545]
We introduce a comprehensive multilingual test suite, spanning seven datasets and over ten languages, to benchmark the performance of state-of-the-art guardrails.
We investigate the resilience of guardrails against recent jailbreaking techniques, and assess the impact of in-context safety policies and language resource availability on guardrails' performance.
Our findings show that existing guardrails are still ineffective at handling multilingual toxicity and lack robustness against jailbreaking prompts.
arXiv Detail & Related papers (2024-10-29T15:51:24Z) - Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lens is a novel approach to enhance multilingual capabilities of large language models (LLMs)
It operates by manipulating the hidden representations within the language-agnostic and language-specific subspaces from top layers of LLMs.
It achieves superior results with much fewer computational resources compared to existing post-training approaches.
arXiv Detail & Related papers (2024-10-06T08:51:30Z) - Multilingual Blending: LLM Safety Alignment Evaluation with Language Mixture [6.17896401271963]
We introduce Multilingual Blending, a mixed-language query-response scheme designed to evaluate the safety alignment of various large language models.
We investigate language patterns such as language availability, morphology, and language family that could impact the effectiveness of Multilingual Blending.
arXiv Detail & Related papers (2024-07-10T03:26:15Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora.<n>But can these models relate corresponding concepts across languages, i.e., be crosslingual?<n>This study evaluates state-of-the-art LLMs on inherently crosslingual tasks.
arXiv Detail & Related papers (2024-06-23T15:15:17Z) - Text Embedding Inversion Security for Multilingual Language Models [2.790855523145802]
Research shows that text can be reconstructed from embeddings, even without knowledge of the underlying model.
This study is the first to investigate multilingual inversion attacks, shedding light on the differences in attacks and defenses across monolingual and multilingual settings.
arXiv Detail & Related papers (2024-01-22T18:34:42Z) - Multilingual Jailbreak Challenges in Large Language Models [96.74878032417054]
In this study, we reveal the presence of multilingual jailbreak challenges within large language models (LLMs)
We consider two potential risky scenarios: unintentional and intentional.
We propose a novel textscSelf-Defense framework that automatically generates multilingual training data for safety fine-tuning.
arXiv Detail & Related papers (2023-10-10T09:44:06Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
We propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally.
Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods.
arXiv Detail & Related papers (2023-06-13T08:08:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.