Unmixing Optical Signals from Undersampled Volumetric Measurements by Filtering the Pixel Latent Variables
- URL: http://arxiv.org/abs/2312.05357v3
- Date: Fri, 01 Nov 2024 19:47:26 GMT
- Title: Unmixing Optical Signals from Undersampled Volumetric Measurements by Filtering the Pixel Latent Variables
- Authors: Catherine Bouchard, Andréanne Deschênes, Vincent Boulanger, Jean-Michel Bellavance, Julia Chabbert, Alexy Pelletier-Rioux, Flavie Lavoie-Cardinal, Christian Gagné,
- Abstract summary: Latent Unmixing is a new approach which applies a band-pass filter to the latent space of a multi-spectralal neural network.
It enables better isolation and quantification of individual signal contributions, especially in the context of undersampled distributions.
We showcase the method's practical use in experimental physics through two test cases that highlight the versatility of our approach.
- Score: 5.74378659752939
- License:
- Abstract: The development of signal unmixing algorithms is essential for leveraging multimodal datasets acquired through a wide array of scientific imaging technologies, including hyperspectral or time-resolved acquisitions. In experimental physics, enhancing the spatio-temporal resolution or expanding the number of detection channels often leads to diminished sampling rate and signal-to-noise ratio (SNR), significantly affecting the efficacy of signal unmixing algorithms. We propose Latent Unmixing, a new approach which applies band-pass filters to the latent space of a multi-dimensional convolutional neural network to disentangle overlapping signal components. It enables better isolation and quantification of individual signal contributions, especially in the context of undersampled distributions. Using multi-dimensional convolution kernels to process all dimensions simultaneously enhances the network's ability to extract information from adjacent pixels, and time- or spectral-bins. This approach enables more effective separation of components in cases where individual pixels do not provide clear, well-resolved information. We showcase the method's practical use in experimental physics through two test cases that highlight the versatility of our approach: fluorescence lifetime microscopy and mode decomposition in optical fibers. The latent unmixing method extracts valuable information from complex signals that cannot be resolved by standard methods. It opens new possibilities in optics and photonics for multichannel separations at an increased sampling rate.
Related papers
- Single-sample image-fusion upsampling of fluorescence lifetime images [0.9054230754796732]
Fluorescence lifetime imaging microscopy provides detailed information about molecular interactions and biological processes.
A major bottleneck for FLIM is image resolution at high acquisition speeds.
Here we present single-sample image-fusion upsampling (SiSIFUS), a data-fusion approach to computational FLIM super-resolution.
arXiv Detail & Related papers (2024-04-19T10:19:18Z) - Fluctuation-based deconvolution in fluorescence microscopy using
plug-and-play denoisers [2.236663830879273]
spatial resolution of images of living samples obtained by fluorescence microscopes is physically limited due to the diffraction of visible light.
Several deconvolution and super-resolution techniques have been proposed to overcome this limitation.
arXiv Detail & Related papers (2023-03-20T15:43:52Z) - Dimensionality-Varying Diffusion Process [52.52681373641533]
Diffusion models learn to reverse a signal destruction process to generate new data.
We make a theoretical generalization of the forward diffusion process via signal decomposition.
We show that our strategy facilitates high-resolution image synthesis and improves FID of diffusion model trained on FFHQ at $1024times1024$ resolution from 52.40 to 10.46.
arXiv Detail & Related papers (2022-11-29T09:05:55Z) - Toward deep-learning-assisted spectrally-resolved imaging of magnetic
noise [52.77024349608834]
We implement a deep neural network to efficiently reconstruct the spectral density of the underlying fluctuating magnetic field.
These results create opportunities for the application of machine-learning methods to color-center-based nanoscale sensing and imaging.
arXiv Detail & Related papers (2022-08-01T19:18:26Z) - Decoupled-and-Coupled Networks: Self-Supervised Hyperspectral Image
Super-Resolution with Subpixel Fusion [67.35540259040806]
We propose a subpixel-level HS super-resolution framework by devising a novel decoupled-and-coupled network, called DCNet.
As the name suggests, DC-Net first decouples the input into common (or cross-sensor) and sensor-specific components.
We append a self-supervised learning module behind the CSU net by guaranteeing the material consistency to enhance the detailed appearances of the restored HS product.
arXiv Detail & Related papers (2022-05-07T23:40:36Z) - Spectral Unmixing of Hyperspectral Images Based on Block Sparse
Structure [1.491109220586182]
This paper presents an innovative spectral unmixing approach for hyperspectral images (HSIs) based on block-sparse structure and sparse Bayesian learning strategy.
arXiv Detail & Related papers (2022-04-10T09:37:41Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
We propose to solve a model-based maximum-a-posterior problem to reconstruct multi-materials images with application to spectral CT.
In particular, we propose to solve a regularized optimization problem based on a plug-in image-denoising function.
We show numerical and experimental results for spectral CT materials decomposition.
arXiv Detail & Related papers (2021-03-25T15:20:10Z) - Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Image [94.42139459221784]
We propose a reconstruction method from sub-Nyquist samples in the time and spatial domain, that is based on unfolding the ISTA algorithm.
Our method allows reducing the number of array elements, sampling rate, and computational time while ensuring high quality imaging performance.
arXiv Detail & Related papers (2021-03-01T19:19:38Z) - Neural network-based on-chip spectroscopy using a scalable plasmonic
encoder [0.4397520291340694]
Conventional spectrometers are limited by trade-offs set by size, cost, signal-to-noise ratio (SNR), and spectral resolution.
Here, we demonstrate a deep learning-based spectral reconstruction framework using a compact and low-cost on-chip sensing scheme.
arXiv Detail & Related papers (2020-12-01T22:50:06Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
We propose an approach for fusing hyperspectral and multispectral images to provide high-quality hyperspectral output.
We demonstrate that the proposed sparse fusion and reconstruction provides quantitatively superior results when compared to existing methods on publicly available images.
arXiv Detail & Related papers (2020-03-15T23:07:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.