Single-sample image-fusion upsampling of fluorescence lifetime images
- URL: http://arxiv.org/abs/2404.13102v1
- Date: Fri, 19 Apr 2024 10:19:18 GMT
- Title: Single-sample image-fusion upsampling of fluorescence lifetime images
- Authors: Valentin Kapitány, Areeba Fatima, Vytautas Zickus, Jamie Whitelaw, Ewan McGhee, Robert Insall, Laura Machesky, Daniele Faccio,
- Abstract summary: Fluorescence lifetime imaging microscopy provides detailed information about molecular interactions and biological processes.
A major bottleneck for FLIM is image resolution at high acquisition speeds.
Here we present single-sample image-fusion upsampling (SiSIFUS), a data-fusion approach to computational FLIM super-resolution.
- Score: 0.9054230754796732
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fluorescence lifetime imaging microscopy (FLIM) provides detailed information about molecular interactions and biological processes. A major bottleneck for FLIM is image resolution at high acquisition speeds, due to the engineering and signal-processing limitations of time-resolved imaging technology. Here we present single-sample image-fusion upsampling (SiSIFUS), a data-fusion approach to computational FLIM super-resolution that combines measurements from a low-resolution time-resolved detector (that measures photon arrival time) and a high-resolution camera (that measures intensity only). To solve this otherwise ill-posed inverse retrieval problem, we introduce statistically informed priors that encode local and global dependencies between the two single-sample measurements. This bypasses the risk of out-of-distribution hallucination as in traditional data-driven approaches and delivers enhanced images compared for example to standard bilinear interpolation. The general approach laid out by SiSIFUS can be applied to other image super-resolution problems where two different datasets are available.
Related papers
- QMambaBSR: Burst Image Super-Resolution with Query State Space Model [55.56075874424194]
Burst super-resolution aims to reconstruct high-resolution images with higher quality and richer details by fusing the sub-pixel information from multiple burst low-resolution frames.
In BusrtSR, the key challenge lies in extracting the base frame's content complementary sub-pixel details while simultaneously suppressing high-frequency noise disturbance.
We introduce a novel Query Mamba Burst Super-Resolution (QMambaBSR) network, which incorporates a Query State Space Model (QSSM) and Adaptive Up-sampling module (AdaUp)
arXiv Detail & Related papers (2024-08-16T11:15:29Z) - One Step Diffusion-based Super-Resolution with Time-Aware Distillation [60.262651082672235]
Diffusion-based image super-resolution (SR) methods have shown promise in reconstructing high-resolution images with fine details from low-resolution counterparts.
Recent techniques have been devised to enhance the sampling efficiency of diffusion-based SR models via knowledge distillation.
We propose a time-aware diffusion distillation method, named TAD-SR, to accomplish effective and efficient image super-resolution.
arXiv Detail & Related papers (2024-08-14T11:47:22Z) - Efficient Conditional Diffusion Model with Probability Flow Sampling for Image Super-resolution [35.55094110634178]
We propose an efficient conditional diffusion model with probability flow sampling for image super-resolution.
Our method achieves higher super-resolution quality than existing diffusion-based image super-resolution methods.
arXiv Detail & Related papers (2024-04-16T16:08:59Z) - Accelerating Diffusion Sampling with Optimized Time Steps [69.21208434350567]
Diffusion probabilistic models (DPMs) have shown remarkable performance in high-resolution image synthesis.
Their sampling efficiency is still to be desired due to the typically large number of sampling steps.
Recent advancements in high-order numerical ODE solvers for DPMs have enabled the generation of high-quality images with much fewer sampling steps.
arXiv Detail & Related papers (2024-02-27T10:13:30Z) - MB-RACS: Measurement-Bounds-based Rate-Adaptive Image Compressed Sensing Network [65.1004435124796]
We propose a Measurement-Bounds-based Rate-Adaptive Image Compressed Sensing Network (MB-RACS) framework.
Our experiments demonstrate that the proposed MB-RACS method surpasses current leading methods.
arXiv Detail & Related papers (2024-01-19T04:40:20Z) - Unmixing Optical Signals from Undersampled Volumetric Measurements by Filtering the Pixel Latent Variables [5.74378659752939]
Latent Unmixing is a new approach which applies a band-pass filter to the latent space of a multi-spectralal neural network.
It enables better isolation and quantification of individual signal contributions, especially in the context of undersampled distributions.
We showcase the method's practical use in experimental physics through two test cases that highlight the versatility of our approach.
arXiv Detail & Related papers (2023-12-08T20:34:37Z) - Unpaired Optical Coherence Tomography Angiography Image Super-Resolution
via Frequency-Aware Inverse-Consistency GAN [6.717440708401628]
We propose a Generative Adversarial Network (GAN)-based unpaired super-resolution method for OCTA images.
To facilitate a precise spectrum of the reconstructed image, we also propose a frequency-aware adversarial loss for the discriminator.
Experiments show that our method outperforms other state-of-the-art unpaired methods both quantitatively and visually.
arXiv Detail & Related papers (2023-09-29T14:19:51Z) - Fluctuation-based deconvolution in fluorescence microscopy using
plug-and-play denoisers [2.236663830879273]
spatial resolution of images of living samples obtained by fluorescence microscopes is physically limited due to the diffraction of visible light.
Several deconvolution and super-resolution techniques have been proposed to overcome this limitation.
arXiv Detail & Related papers (2023-03-20T15:43:52Z) - Mining the manifolds of deep generative models for multiple
data-consistent solutions of ill-posed tomographic imaging problems [10.115302976900445]
Tomographic imaging is in general an ill-posed inverse problem.
We propose a new empirical sampling method that computes multiple solutions of a tomographic inverse problem.
arXiv Detail & Related papers (2022-02-10T20:27:31Z) - Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Image [94.42139459221784]
We propose a reconstruction method from sub-Nyquist samples in the time and spatial domain, that is based on unfolding the ISTA algorithm.
Our method allows reducing the number of array elements, sampling rate, and computational time while ensuring high quality imaging performance.
arXiv Detail & Related papers (2021-03-01T19:19:38Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
We propose an approach for fusing hyperspectral and multispectral images to provide high-quality hyperspectral output.
We demonstrate that the proposed sparse fusion and reconstruction provides quantitatively superior results when compared to existing methods on publicly available images.
arXiv Detail & Related papers (2020-03-15T23:07:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.