Estimation Sample Complexity of a Class of Nonlinear Continuous-time Systems
- URL: http://arxiv.org/abs/2312.05382v3
- Date: Fri, 12 Jul 2024 22:35:47 GMT
- Title: Estimation Sample Complexity of a Class of Nonlinear Continuous-time Systems
- Authors: Simon Kuang, Xinfan Lin,
- Abstract summary: We present a method of parameter estimation for large class of nonlinear systems, namely those in which the state consists of output derivatives and the flow is linear in the parameter.
The method, which solves for the unknown parameter by directly inverting the dynamics using regularized linear regression, is based on new design and analysis ideas for differentiation filtering and regularized least squares.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a method of parameter estimation for large class of nonlinear systems, namely those in which the state consists of output derivatives and the flow is linear in the parameter. The method, which solves for the unknown parameter by directly inverting the dynamics using regularized linear regression, is based on new design and analysis ideas for differentiation filtering and regularized least squares. Combined in series, they yield a novel finite-sample bound on mean absolute error of estimation.
Related papers
- Nonlinear embeddings for conserving Hamiltonians and other quantities
with Neural Galerkin schemes [1.1509084774278489]
This work focuses on the conservation of quantities such as Hamiltonians, mass, and momentum when solution fields of partial differential equations are approximated with nonlinear parametrizations such as deep networks.
The proposed approach builds on Neural Galerkin schemes that are based on the Dirac--Frenkel variational principle to train nonlinear parametrizations sequentially in time.
arXiv Detail & Related papers (2023-10-11T13:32:04Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
We propose an efficient online approximate Bayesian inference algorithm for estimating the parameters of a nonlinear function from a potentially non-stationary data stream.
The method is based on the extended Kalman filter (EKF), but uses a novel low-rank plus diagonal decomposition of the posterior matrix.
In contrast to methods based on variational inference, our method is fully deterministic, and does not require step-size tuning.
arXiv Detail & Related papers (2023-05-31T03:48:49Z) - The Power of Learned Locally Linear Models for Nonlinear Policy
Optimization [26.45568696453259]
This paper conducts a rigorous analysis of a simplified variant of this strategy for general nonlinear systems.
We analyze an algorithm which iterates between estimating local linear models of nonlinear system dynamics and performing $mathttiLQR$-like policy updates.
arXiv Detail & Related papers (2023-05-16T17:13:00Z) - Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic
Analysis For DDIM-Type Samplers [90.45898746733397]
We develop a framework for non-asymptotic analysis of deterministic samplers used for diffusion generative modeling.
We show that one step along the probability flow ODE can be expressed as two steps: 1) a restoration step that runs ascent on the conditional log-likelihood at some infinitesimally previous time, and 2) a degradation step that runs the forward process using noise pointing back towards the current gradient.
arXiv Detail & Related papers (2023-03-06T18:59:19Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
We revisit a model for time-varying linear regression that assumes the unknown parameters evolve according to a linear dynamical system.
Counterintuitively, we show that when the underlying dynamics are stable the parameters of this model can be estimated from data by combining just two ordinary least squares estimates.
arXiv Detail & Related papers (2021-12-29T23:37:06Z) - Hessian Eigenspectra of More Realistic Nonlinear Models [73.31363313577941]
We make a emphprecise characterization of the Hessian eigenspectra for a broad family of nonlinear models.
Our analysis takes a step forward to identify the origin of many striking features observed in more complex machine learning models.
arXiv Detail & Related papers (2021-03-02T06:59:52Z) - Fundamental limits and algorithms for sparse linear regression with
sublinear sparsity [16.3460693863947]
We establish exact expressions for the normalized mutual information and minimum mean-square-error (MMSE) of sparse linear regression.
We show how to modify the existing well-known AMP algorithms for linear regimes to sub-linear ones.
arXiv Detail & Related papers (2021-01-27T01:27:03Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Bayesian System ID: Optimal management of parameter, model, and
measurement uncertainty [0.0]
We evaluate the robustness of a probabilistic formulation of system identification (ID) to sparse, noisy, and indirect data.
We show that the log posterior has improved geometric properties compared with the objective function surfaces of traditional methods.
arXiv Detail & Related papers (2020-03-04T22:48:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.