Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic
Analysis For DDIM-Type Samplers
- URL: http://arxiv.org/abs/2303.03384v1
- Date: Mon, 6 Mar 2023 18:59:19 GMT
- Title: Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic
Analysis For DDIM-Type Samplers
- Authors: Sitan Chen, Giannis Daras, Alexandros G. Dimakis
- Abstract summary: We develop a framework for non-asymptotic analysis of deterministic samplers used for diffusion generative modeling.
We show that one step along the probability flow ODE can be expressed as two steps: 1) a restoration step that runs ascent on the conditional log-likelihood at some infinitesimally previous time, and 2) a degradation step that runs the forward process using noise pointing back towards the current gradient.
- Score: 90.45898746733397
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a framework for non-asymptotic analysis of deterministic samplers
used for diffusion generative modeling. Several recent works have analyzed
stochastic samplers using tools like Girsanov's theorem and a chain rule
variant of the interpolation argument. Unfortunately, these techniques give
vacuous bounds when applied to deterministic samplers. We give a new
operational interpretation for deterministic sampling by showing that one step
along the probability flow ODE can be expressed as two steps: 1) a restoration
step that runs gradient ascent on the conditional log-likelihood at some
infinitesimally previous time, and 2) a degradation step that runs the forward
process using noise pointing back towards the current iterate. This perspective
allows us to extend denoising diffusion implicit models to general, non-linear
forward processes. We then develop the first polynomial convergence bounds for
these samplers under mild conditions on the data distribution.
Related papers
- Unified Convergence Analysis for Score-Based Diffusion Models with Deterministic Samplers [49.1574468325115]
We introduce a unified convergence analysis framework for deterministic samplers.
Our framework achieves iteration complexity of $tilde O(d2/epsilon)$.
We also provide a detailed analysis of Denoising Implicit Diffusion Models (DDIM)-type samplers.
arXiv Detail & Related papers (2024-10-18T07:37:36Z) - Stochastic Sampling from Deterministic Flow Models [8.849981177332594]
We present a method to turn flow models into a family of differential equations (SDEs) that have the same marginal distributions.
We empirically demonstrate advantages of our method on a toy Gaussian setup and on the large scale ImageNet generation task.
arXiv Detail & Related papers (2024-10-03T05:18:28Z) - HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models [1.949927790632678]
This paper builds on the log transform known as the Cole-Hopf transform in Brownian motion contexts.
We develop a new algorithm, named the HJ-sampler, for inference for the inverse problem of a differential equation with given terminal observations.
arXiv Detail & Related papers (2024-09-15T05:30:54Z) - Non-asymptotic bounds for forward processes in denoising diffusions: Ornstein-Uhlenbeck is hard to beat [49.1574468325115]
This paper presents explicit non-asymptotic bounds on the forward diffusion error in total variation (TV)
We parametrise multi-modal data distributions in terms of the distance $R$ to their furthest modes and consider forward diffusions with additive and multiplicative noise.
arXiv Detail & Related papers (2024-08-25T10:28:31Z) - A Sharp Convergence Theory for The Probability Flow ODEs of Diffusion Models [45.60426164657739]
We develop non-asymptotic convergence theory for a diffusion-based sampler.
We prove that $d/varepsilon$ are sufficient to approximate the target distribution to within $varepsilon$ total-variation distance.
Our results also characterize how $ell$ score estimation errors affect the quality of the data generation processes.
arXiv Detail & Related papers (2024-08-05T09:02:24Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
We develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models.
In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach.
arXiv Detail & Related papers (2023-06-15T16:30:08Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Error Bounds for Flow Matching Methods [38.9898500163582]
Flow matching methods approximate a flow between two arbitrary probability distributions.
We present error bounds for the flow matching procedure using fully deterministic sampling, assuming an $L2$ bound on the approximation error and a certain regularity on the data distributions.
arXiv Detail & Related papers (2023-05-26T12:13:53Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.