論文の概要: Stateful Large Language Model Serving with Pensieve
- arxiv url: http://arxiv.org/abs/2312.05516v2
- Date: Tue, 28 May 2024 04:34:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 03:57:34.501896
- Title: Stateful Large Language Model Serving with Pensieve
- Title(参考訳): Pensieveを使ったステートフルな大規模言語モデル
- Authors: Lingfan Yu, Jinyang Li,
- Abstract要約: Pensieve はマルチターン会話 LLM サービスに最適化されたシステムである。
Pensieveは、以前処理された履歴をキャッシュすることで、リクエスト間での会話状態を維持する。
- 参考スコア(独自算出の注目度): 2.942499535977391
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are wildly popular today and it is important to serve them efficiently. Existing LLM serving systems are stateless across requests. Consequently, when LLMs are used in the common setting of multi-turn conversations, a growing log of the conversation history must be processed alongside any request by the serving system at each turn, resulting in repeated processing. In this paper, we design Pensieve, a system optimized for multi-turn conversation LLM serving. Pensieve maintains the conversation state across requests by caching previously processed history to avoid duplicate processing. Pensieve's multi-tier caching strategy can utilize both GPU and CPU memory to efficiently store and retrieve cached data. Pensieve also generalizes the recent PagedAttention kernel to support attention between multiple input tokens with a GPU cache spread over non-contiguous memory. Our evaluation shows that Pensieve can achieve 13-58% more throughput compared to vLLM and TensorRT-LLM and significantly reduce latency.
- Abstract(参考訳): 大規模言語モデル(LLM)は現在非常に人気があり、効率的に提供することが重要です。
既存のLLMサービスシステムはリクエスト間でステートレスである。
従って、マルチターン会話の共通設定でLLMを使用する場合、各ターンでサービスシステムによる要求と合わせて会話履歴のログを増大させ、繰り返し処理を行う必要がある。
本稿では,マルチターン会話LLMサービスに最適化されたシステムであるPensieveを設計する。
Pensieveは、以前処理された履歴をキャッシュすることで、リクエスト間での会話状態を維持する。
Pensieveのマルチ層キャッシュ戦略は、GPUとCPUメモリの両方を使用して、キャッシュされたデータを効率的に保存および取得することができる。
Pensieve氏はまた、最近のPagedAttentionカーネルを一般化して、GPUキャッシュを非連続メモリ上に分散した複数の入力トークン間の注意をサポートする。
評価の結果, Pensieve は vLLM や TensorRT-LLM と比較して 13-58% のスループットを実現でき,レイテンシを大幅に低減できることがわかった。
関連論文リスト
- Efficient Inference of Vision Instruction-Following Models with Elastic Cache [76.44955111634545]
我々は,命令追従型大規模視覚言語モデルの効率的なデプロイのための新しい戦略であるElastic Cacheを紹介する。
本稿では,冗長キャッシュを具現化する重要なキャッシュマージ戦略を提案する。
命令符号化では,キャッシュの重要性を評価するために周波数を利用する。
様々なLVLMの結果は、Elastic Cacheが効率を向上するだけでなく、言語生成における既存のプルーニングメソッドよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-07-25T15:29:05Z) - vTensor: Flexible Virtual Tensor Management for Efficient LLM Serving [53.972175896814505]
大規模言語モデル(LLM)は様々なドメインで広く使われ、数百万の日次要求を処理する。
大規模言語モデル(LLM)は様々なドメインで広く使われ、数百万の日次要求を処理する。
論文 参考訳(メタデータ) (2024-07-22T14:37:58Z) - PQCache: Product Quantization-based KVCache for Long Context LLM Inference [27.523568511043273]
キーバリューキャッシュ(KVCache)は、大規模言語モデル(LLM)において重要なコンポーネントである
現在の手法では、この問題に対処するためにLLMにおける自己注意に適したキーと値を選択的に決定する。
本稿では,KVCacheの管理にPQ(Product Quantization)を採用しているPQCacheを提案する。
論文 参考訳(メタデータ) (2024-07-01T13:05:42Z) - RelayAttention for Efficient Large Language Model Serving with Long System Prompts [59.50256661158862]
本稿では,長いシステムプロンプトを含むLCMサービスの効率を向上させることを目的とする。
これらのシステムプロンプトの処理には、既存の因果注意アルゴリズムにおいて、大量のメモリアクセスが必要である。
本稿では,DRAMから入力トークンのバッチに対して,DRAMから隠れた状態を正確に1回読み取ることのできるアテンションアルゴリズムであるRelayAttentionを提案する。
論文 参考訳(メタデータ) (2024-02-22T18:58:28Z) - Efficient Memory Management for Large Language Model Serving with
PagedAttention [44.70922552274376]
大規模言語モデル(LLM)の高スループットサービスには,一度に十分な数の要求が要求される。
既存のシステムでは、各要求のキー値キャッシュ(KVキャッシュ)メモリが巨大で、成長し、動的に縮小するため、苦労している。
本稿では,オペレーティングシステムにおける従来の仮想メモリとページング技術にヒントを得たアテンションアルゴリズムであるPagedAttentionを提案する。
論文 参考訳(メタデータ) (2023-09-12T12:50:04Z) - Augmenting Language Models with Long-Term Memory [142.04940250657637]
既存の大規模言語モデル(LLM)では、入力長制限のため、固定サイズの入力しかできない。
本稿では,Long-Term Memory (LongMem) を付加した言語モデルを提案する。
論文 参考訳(メタデータ) (2023-06-12T15:13:39Z) - Fast Distributed Inference Serving for Large Language Models [12.682341873843882]
大規模言語モデル(LLM)は、ChatGPTで実証された対話型AIアプリケーションの新しい世代のパワーである。
これらのアプリケーションのインタラクティブな性質は、モデル推論に低いジョブ完了時間(JCT)を必要とする。
LLMのための分散推論サービスシステムであるFastServeについて述べる。
論文 参考訳(メタデータ) (2023-05-10T06:17:50Z) - Enhancing Large Language Model with Self-Controlled Memory Framework [56.38025154501917]
大きな言語モデル(LLM)は、長い入力を処理できないため、重要な歴史的情報が失われる。
本稿では,LLMが長期記憶を維持し,関連する情報をリコールする能力を高めるための自己制御メモリ(SCM)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-26T07:25:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。