Chain-of-Thought in Neural Code Generation: From and For Lightweight Language Models
- URL: http://arxiv.org/abs/2312.05562v2
- Date: Sun, 4 Aug 2024 04:53:53 GMT
- Title: Chain-of-Thought in Neural Code Generation: From and For Lightweight Language Models
- Authors: Guang Yang, Yu Zhou, Xiang Chen, Xiangyu Zhang, Terry Yue Zhuo, Taolue Chen,
- Abstract summary: Large Language Models (LLMs) have demonstrated remarkable potential in code generation.
In this study, we investigate lightweight Language Models (lLMs) which are defined to have fewer than 10 billion parameters.
Based on these findings, we design a novel approach COTTON which can leverage lLMs to automatically generate Chain of Thought (CoTs)
The results show that the CoTs generated by COTTON outperform the baselines in terms of automated and human evaluation metrics.
- Score: 22.392809555644646
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable potential in code generation. The integration of Chain of Thought (CoT) reasoning can further boost their performance. However, current CoT methods often require manual writing or LLMs with over 100 billion parameters to generate, impeding their applicability in resource-constrained scenarios. In this study, we investigate lightweight Language Models (lLMs), which are defined to have fewer than 10 billion parameters. Empirically, we find that most lLMs cannot generate high-quality CoTs when prompted by the few-shot method, but can take advantage of high-quality CoTs generated elsewhere to improve their performance in code generation. Based on these findings, we design a novel approach COTTON which can leverage lLMs to automatically generate CoTs for code generation. We synthesize new datasets and conduct extensive experiments on various benchmarks. The results show that the CoTs generated by COTTON outperform the baselines in terms of automated and human evaluation metrics. In particular, the CoTs generated by COTTON boost various lLMs to achieve higher performance gains than those generated by LLMs such as ChatGLM (130B), and are competitive with those generated by gpt-3.5-turbo (175B). Our study also showcases the potential of lLMs in software engineering applications.
Related papers
- A Strategic Coordination Framework of Small LLMs Matches Large LLMs in Data Synthesis [43.746749403268275]
Large Language Models (LLMs) suffer from high computational costs, environmental inefficiency, and potential biases inherited from monolithic architectures.
We propose a collaborative framework, GRA, that aggregates specialized roles across small LLMs to generate high-quality, diverse, and reliable data.
Our results challenge the necessity of monolithic large models for high-quality data synthesis, advocating instead for strategic coordination of smaller agents.
arXiv Detail & Related papers (2025-04-11T06:13:43Z) - Every Sample Matters: Leveraging Mixture-of-Experts and High-Quality Data for Efficient and Accurate Code LLM [43.77512279007385]
Ling-Coder-Lite is a code large language model with comprehensive performance yet ultimate efficiency.
We leverage the efficient Mixture-of-Experts (MoE) architecture along with a set of high-quality data curation methods.
Ling-Coder-Lite exhibits on-par performance on 12 representative coding benchmarks compared to state-of-the-art models of similar size.
arXiv Detail & Related papers (2025-03-22T15:00:18Z) - SnipGen: A Mining Repository Framework for Evaluating LLMs for Code [51.07471575337676]
Language Models (LLMs) are trained on extensive datasets that include code repositories.
evaluating their effectiveness poses significant challenges due to the potential overlap between the datasets used for training and those employed for evaluation.
We introduce SnipGen, a comprehensive repository mining framework designed to leverage prompt engineering across various downstream tasks for code generation.
arXiv Detail & Related papers (2025-02-10T21:28:15Z) - Self-Explained Keywords Empower Large Language Models for Code Generation [5.236633572296712]
Large language models (LLMs) have achieved impressive performance in code generation.
Sek(textbfSelf-textbfExplained textbfKeywords) extracts and explains the key terms in the problem description with the LLM itself.
arXiv Detail & Related papers (2024-10-21T12:52:03Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - Genetic Instruct: Scaling up Synthetic Generation of Coding Instructions for Large Language Models [54.51932175059004]
We introduce a scalable method for generating synthetic instructions to enhance the code generation capability of Large Language Models.
The proposed algorithm, Genetic-Instruct, mimics evolutionary processes, utilizing self-instruction to create numerous synthetic samples from a limited number of seeds.
arXiv Detail & Related papers (2024-07-29T20:42:59Z) - Case2Code: Scalable Synthetic Data for Code Generation [105.89741089673575]
Large Language Models (LLMs) have shown outstanding breakthroughs in code generation.
Recent work improves code LLMs by training on synthetic data generated by some powerful LLMs.
We propose a textbfCase2Code task by exploiting the expressiveness and correctness of programs.
arXiv Detail & Related papers (2024-07-17T11:35:00Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - Applying RLAIF for Code Generation with API-usage in Lightweight LLMs [15.366324461797582]
Reinforcement Learning from AI Feedback (RLAIF) has demonstrated significant potential across various domains.
This paper introduces an RLAIF framework for improving the code generation abilities of lightweight (1B parameters) LLMs.
arXiv Detail & Related papers (2024-06-28T17:16:03Z) - UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large
Language Models for Program Testing [27.45301385265713]
We present a large-scale dataset UniTSyn, which is capable of enhancing the prowess of LLMs for Unit Test Synthesis.
By leveraging Language Server Protocol, UniSyn achieves the challenging goal of collecting focal-test pairs without per-project execution setups or per-language setups.
Experiments demonstrate that, by building an autoregressive model based on UniTSyn, we can achieve significant benefits in learning and understanding unit test representations.
arXiv Detail & Related papers (2024-02-04T22:48:05Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - LLM-Assisted Code Cleaning For Training Accurate Code Generators [53.087019724256606]
We investigate data quality for code and find that making the code more structured and readable leads to improved code generation performance of the system.
We build a novel data-cleaning pipeline that uses these principles to transform existing programs.
We evaluate our approach on two challenging algorithmic code generation benchmarks and find that fine-tuning CodeLLaMa-7B improves the performance by up to 30% compared to fine-tuning on the original dataset.
arXiv Detail & Related papers (2023-11-25T02:45:50Z) - Bridging Code Semantic and LLMs: Semantic Chain-of-Thought Prompting for
Code Generation [22.219645213202178]
This paper proposes the "Semantic Chain-of-Thought" approach to intruduce semantic information of code, named SeCoT.
We show that SeCoT can achieves state-of-the-art performance, greatly improving the potential for large models and code generation.
arXiv Detail & Related papers (2023-10-16T05:09:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.