Case2Code: Scalable Synthetic Data for Code Generation
- URL: http://arxiv.org/abs/2407.12504v2
- Date: Sat, 08 Feb 2025 01:27:57 GMT
- Title: Case2Code: Scalable Synthetic Data for Code Generation
- Authors: Yunfan Shao, Linyang Li, Yichuan Ma, Peiji Li, Demin Song, Qinyuan Cheng, Shimin Li, Xiaonan Li, Pengyu Wang, Qipeng Guo, Hang Yan, Xipeng Qiu, Xuanjing Huang, Dahua Lin,
- Abstract summary: Large Language Models (LLMs) have shown outstanding breakthroughs in code generation.<n>Recent work improves code LLMs by training on synthetic data generated by some powerful LLMs.<n>We propose a textbfCase2Code task by exploiting the expressiveness and correctness of programs.
- Score: 105.89741089673575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have shown outstanding breakthroughs in code generation. Recent work improves code LLMs by training on synthetic data generated by some powerful LLMs, which can be challenging to scale due to the dependence on a teacher model and high generation costs. In this paper, we focus on synthesizing code data at scale and propose a \textbf{Case2Code} task by exploiting the expressiveness and correctness of programs. \textbf{Case2Code} is an inductive inference task that aims to infer underlying code implementations by observing input-output examples or program behaviors, By incorporating LLMs to generate program inputs, and executing the program with these inputs to obtain the program outputs, we can synthesize diverse and high-quality \textbf{Case2Code} data at scale for training and evaluating code LLMs. Experimental results show that case-to-code induction is challenging for current representative LLMs if they are untrained. Models trained with \textbf{Case2Code} improve performance not only on distribution case-to-code induction but also on various coding-generation tasks, demonstrating the great potential of large-scale synthetic data and inductive learning.
Related papers
- Every Sample Matters: Leveraging Mixture-of-Experts and High-Quality Data for Efficient and Accurate Code LLM [43.77512279007385]
Ling-Coder-Lite is a code large language model with comprehensive performance yet ultimate efficiency.
We leverage the efficient Mixture-of-Experts (MoE) architecture along with a set of high-quality data curation methods.
Ling-Coder-Lite exhibits on-par performance on 12 representative coding benchmarks compared to state-of-the-art models of similar size.
arXiv Detail & Related papers (2025-03-22T15:00:18Z) - CodeIF: Benchmarking the Instruction-Following Capabilities of Large Language Models for Code Generation [24.090719826360342]
We introduce CodeIF, the first benchmark designed to assess the abilities of Large Language Models (LLMs) to adhere to task-oriented instructions within code generation scenarios.
We conduct extensive experiments with LLMs, analyzing their strengths and limitations in meeting the demands of these tasks.
arXiv Detail & Related papers (2025-02-26T14:19:49Z) - UnitCoder: Scalable Iterative Code Synthesis with Unit Test Guidance [65.01483640267885]
Large Language Models (LLMs) have demonstrated remarkable capabilities in various tasks, yet code generation remains a major challenge.
We introduce UnitCoder, a systematic pipeline leveraging model-generated unit tests to guide and validate the code generation process.
Our work presents a scalable approach that leverages model-generated unit tests to guide the synthesis of high-quality code data from pre-training corpora.
arXiv Detail & Related papers (2025-02-17T05:37:02Z) - OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [76.59316249991657]
Large language models (LLMs) for code have become indispensable in various domains, including code generation, reasoning tasks and agent systems.
While open-access code LLMs are increasingly approaching the performance levels of proprietary models, high-quality code LLMs remain limited.
We introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an "open cookbook" for the research community.
arXiv Detail & Related papers (2024-11-07T17:47:25Z) - zsLLMCode: An Effective Approach for Functional Code Embedding via LLM with Zero-Shot Learning [6.976968804436321]
Large language models (LLMs) have the capability of zero-shot learning, which does not require training or fine-tuning.
We propose zsLLMCode, a novel approach that generates functional code embeddings using LLMs.
arXiv Detail & Related papers (2024-09-23T01:03:15Z) - Inductive or Deductive? Rethinking the Fundamental Reasoning Abilities of LLMs [99.76347807139615]
Reasoning encompasses two typical types: deductive reasoning and inductive reasoning.
Despite extensive research into the reasoning capabilities of Large Language Models (LLMs), most studies have failed to rigorously differentiate between inductive and deductive reasoning.
This raises an essential question: In LLM reasoning, which poses a greater challenge - deductive or inductive reasoning?
arXiv Detail & Related papers (2024-07-31T18:47:11Z) - Can Language Models Pretend Solvers? Logic Code Simulation with LLMs [3.802945676202634]
Transformer-based large language models (LLMs) have demonstrated significant potential in addressing logic problems.
This study delves into a novel aspect, namely logic code simulation, which forces LLMs to emulate logical solvers in predicting the results of logical programs.
arXiv Detail & Related papers (2024-03-24T11:27:16Z) - Code Needs Comments: Enhancing Code LLMs with Comment Augmentation [91.52444946362547]
We introduce a novel data augmentation method that generates comments for existing code, coupled with a data filtering strategy that filters out code data poorly correlated with natural language.
We conducted experiments on three code-focused Large Language Models and observed consistent improvements in performance on two widely-used programming skill benchmarks.
arXiv Detail & Related papers (2024-02-20T13:56:38Z) - CodeMind: A Framework to Challenge Large Language Models for Code Reasoning [1.4027589547318842]
We introduce CodeMind, a framework designed to gauge the code reasoning abilities of Large Language Models (LLMs)
CodeMind supports three code reasoning tasks: Independent Execution Reasoning (IER), Dependent Execution Reasoning (DER), and Specification Reasoning (SR)
arXiv Detail & Related papers (2024-02-15T02:24:46Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - Code Prompting Elicits Conditional Reasoning Abilities in Text+Code LLMs [65.2379940117181]
We introduce code prompting, a chain of prompts that transforms a natural language problem into code.
We find that code prompting exhibits a high-performance boost for multiple LLMs.
Our analysis of GPT 3.5 reveals that the code formatting of the input problem is essential for performance improvement.
arXiv Detail & Related papers (2024-01-18T15:32:24Z) - Code Simulation Challenges for Large Language Models [6.970495767499435]
This work studies to what extent Large Language Models (LLMs) can simulate coding and algorithmic tasks.
We introduce benchmarks for straight-line programs, code that contains critical paths, and approximate and redundant instructions.
We propose a novel off-the-shelf prompting method, Chain of Simulation (CoSm), which instructs LLMs to simulate code execution line by line/follow the pattern of compilers.
arXiv Detail & Related papers (2024-01-17T09:23:59Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - At Which Training Stage Does Code Data Help LLMs Reasoning? [21.74241875923737]
This paper explores the impact of code data on Large Language Models (LLMs) at different stages.
Pre-training LLMs with the mixture of code and text can significantly enhance LLMs' general reasoning capability.
At the instruction-tuning stage, code data endows LLMs the task-specific reasoning capability.
arXiv Detail & Related papers (2023-09-28T09:50:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.