CoGS: Controllable Gaussian Splatting
- URL: http://arxiv.org/abs/2312.05664v2
- Date: Mon, 22 Apr 2024 17:28:30 GMT
- Title: CoGS: Controllable Gaussian Splatting
- Authors: Heng Yu, Joel Julin, Zoltán Á. Milacski, Koichiro Niinuma, László A. Jeni,
- Abstract summary: Controllable Gaussian Splatting (CoGS) is a new method for capturing and re-animating 3D structures.
CoGS offers real-time control of dynamic scenes without the prerequisite of pre-computing control signals.
In our evaluations, CoGS consistently outperformed existing dynamic and controllable neural representations in terms of visual fidelity.
- Score: 5.909271640907126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Capturing and re-animating the 3D structure of articulated objects present significant barriers. On one hand, methods requiring extensively calibrated multi-view setups are prohibitively complex and resource-intensive, limiting their practical applicability. On the other hand, while single-camera Neural Radiance Fields (NeRFs) offer a more streamlined approach, they have excessive training and rendering costs. 3D Gaussian Splatting would be a suitable alternative but for two reasons. Firstly, existing methods for 3D dynamic Gaussians require synchronized multi-view cameras, and secondly, the lack of controllability in dynamic scenarios. We present CoGS, a method for Controllable Gaussian Splatting, that enables the direct manipulation of scene elements, offering real-time control of dynamic scenes without the prerequisite of pre-computing control signals. We evaluated CoGS using both synthetic and real-world datasets that include dynamic objects that differ in degree of difficulty. In our evaluations, CoGS consistently outperformed existing dynamic and controllable neural representations in terms of visual fidelity.
Related papers
- DeGauss: Dynamic-Static Decomposition with Gaussian Splatting for Distractor-free 3D Reconstruction [10.683829048617897]
We introduce DeGauss, a self-supervised framework for dynamic scene reconstruction based on a decoupled dynamic-static Gaussian Splatting design.
DeGauss generalizes robustly across a wide range of real-world scenarios, from casual image collections to long, dynamic egocentric videos.
Experiments on benchmarks including NeRF-on-the-go, ADT, AEA, Hot3D, and EPIC-Fields demonstrate that DeGauss consistently outperforms existing methods.
arXiv Detail & Related papers (2025-03-17T13:53:04Z) - HybridGS: Decoupling Transients and Statics with 2D and 3D Gaussian Splatting [47.67153284714988]
We propose a novel hybrid representation, termed as HybridGS, using 2D Gaussians for transient objects per image.
We also propose a straightforward yet effective multi-stage training strategy to ensure robust training and high-quality view synthesis.
Experiments on benchmark datasets show our state-of-the-art performance of novel view synthesis in both indoor and outdoor scenes.
arXiv Detail & Related papers (2024-12-05T03:20:35Z) - UrbanGS: Semantic-Guided Gaussian Splatting for Urban Scene Reconstruction [86.4386398262018]
UrbanGS uses 2D semantic maps and an existing dynamic Gaussian approach to distinguish static objects from the scene.
For potentially dynamic objects, we aggregate temporal information using learnable time embeddings.
Our approach outperforms state-of-the-art methods in reconstruction quality and efficiency.
arXiv Detail & Related papers (2024-12-04T16:59:49Z) - T-3DGS: Removing Transient Objects for 3D Scene Reconstruction [83.05271859398779]
Transient objects in video sequences can significantly degrade the quality of 3D scene reconstructions.
We propose T-3DGS, a novel framework that robustly filters out transient distractors during 3D reconstruction using Gaussian Splatting.
arXiv Detail & Related papers (2024-11-29T07:45:24Z) - DeSiRe-GS: 4D Street Gaussians for Static-Dynamic Decomposition and Surface Reconstruction for Urban Driving Scenes [71.61083731844282]
We present DeSiRe-GS, a self-supervised gaussian splatting representation.
It enables effective static-dynamic decomposition and high-fidelity surface reconstruction in complex driving scenarios.
arXiv Detail & Related papers (2024-11-18T05:49:16Z) - HiCoM: Hierarchical Coherent Motion for Streamable Dynamic Scene with 3D Gaussian Splatting [7.507657419706855]
This paper proposes an efficient framework, dubbed HiCoM, with three key components.
First, we construct a compact and robust initial 3DGS representation using a perturbation smoothing strategy.
Next, we introduce a Hierarchical Coherent Motion mechanism that leverages the inherent non-uniform distribution and local consistency of 3D Gaussians.
Experiments conducted on two widely used datasets show that our framework improves learning efficiency of the state-of-the-art methods by about $20%$.
arXiv Detail & Related papers (2024-11-12T04:40:27Z) - FreeGaussian: Guidance-free Controllable 3D Gaussian Splats with Flow Derivatives [43.087760256901234]
We propose FreeGaussian, that mathematically derives dynamic Gaussian motion from optical flow and camera motion.
Our method enables self-supervised optimization and continuity of dynamic Gaussian motions from flow priors.
arXiv Detail & Related papers (2024-10-29T14:29:21Z) - WildGaussians: 3D Gaussian Splatting in the Wild [80.5209105383932]
We introduce WildGaussians, a novel approach to handle occlusions and appearance changes with 3DGS.
We demonstrate that WildGaussians matches the real-time rendering speed of 3DGS while surpassing both 3DGS and NeRF baselines in handling in-the-wild data.
arXiv Detail & Related papers (2024-07-11T12:41:32Z) - SpotlessSplats: Ignoring Distractors in 3D Gaussian Splatting [44.42317312908314]
3D Gaussian Splatting (3DGS) is a promising technique for 3D reconstruction, offering efficient training and rendering speeds.
Current methods require highly controlled environments to meet the inter-view consistency assumption of 3DGS.
We present SpotLessSplats, an approach that leverages pre-trained and general-purpose features coupled with robust optimization to effectively ignore transient distractors.
arXiv Detail & Related papers (2024-06-28T17:07:11Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
We propose learning-to-prune 3DGS, where a trainable binary mask is applied to the importance score that can find optimal pruning ratio automatically.
Experiments have shown that LP-3DGS consistently produces a good balance that is both efficient and high quality.
arXiv Detail & Related papers (2024-05-29T05:58:34Z) - HUGS: Holistic Urban 3D Scene Understanding via Gaussian Splatting [53.6394928681237]
holistic understanding of urban scenes based on RGB images is a challenging yet important problem.
Our main idea involves the joint optimization of geometry, appearance, semantics, and motion using a combination of static and dynamic 3D Gaussians.
Our approach offers the ability to render new viewpoints in real-time, yielding 2D and 3D semantic information with high accuracy.
arXiv Detail & Related papers (2024-03-19T13:39:05Z) - SC-GS: Sparse-Controlled Gaussian Splatting for Editable Dynamic Scenes [59.23385953161328]
Novel view synthesis for dynamic scenes is still a challenging problem in computer vision and graphics.
We propose a new representation that explicitly decomposes the motion and appearance of dynamic scenes into sparse control points and dense Gaussians.
Our method can enable user-controlled motion editing while retaining high-fidelity appearances.
arXiv Detail & Related papers (2023-12-04T11:57:14Z) - Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis [58.5779956899918]
We present a method that simultaneously addresses the tasks of dynamic scene novel-view synthesis and six degree-of-freedom (6-DOF) tracking of all dense scene elements.
We follow an analysis-by-synthesis framework, inspired by recent work that models scenes as a collection of 3D Gaussians.
We demonstrate a large number of downstream applications enabled by our representation, including first-person view synthesis, dynamic compositional scene synthesis, and 4D video editing.
arXiv Detail & Related papers (2023-08-18T17:59:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.