UrbanGS: Semantic-Guided Gaussian Splatting for Urban Scene Reconstruction
- URL: http://arxiv.org/abs/2412.03473v2
- Date: Fri, 21 Mar 2025 10:30:57 GMT
- Title: UrbanGS: Semantic-Guided Gaussian Splatting for Urban Scene Reconstruction
- Authors: Ziwen Li, Jiaxin Huang, Runnan Chen, Yunlong Che, Yandong Guo, Tongliang Liu, Fakhri Karray, Mingming Gong,
- Abstract summary: UrbanGS uses 2D semantic maps and an existing dynamic Gaussian approach to distinguish static objects from the scene.<n>For potentially dynamic objects, we aggregate temporal information using learnable time embeddings.<n>Our approach outperforms state-of-the-art methods in reconstruction quality and efficiency.
- Score: 86.4386398262018
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reconstructing urban scenes is challenging due to their complex geometries and the presence of potentially dynamic objects. 3D Gaussian Splatting (3DGS)-based methods have shown strong performance, but existing approaches often incorporate manual 3D annotations to improve dynamic object modeling, which is impractical due to high labeling costs. Some methods leverage 4D Gaussian Splatting (4DGS) to represent the entire scene, but they treat static and dynamic objects uniformly, leading to unnecessary updates for static elements and ultimately degrading reconstruction quality. To address these issues, we propose UrbanGS, which leverages 2D semantic maps and an existing dynamic Gaussian approach to distinguish static objects from the scene, enabling separate processing of definite static and potentially dynamic elements. Specifically, for definite static regions, we enforce global consistency to prevent unintended changes in dynamic Gaussian and introduce a K-nearest neighbor (KNN)-based regularization to improve local coherence on low-textured ground surfaces. Notably, for potentially dynamic objects, we aggregate temporal information using learnable time embeddings, allowing each Gaussian to model deformations over time. Extensive experiments on real-world datasets demonstrate that our approach outperforms state-of-the-art methods in reconstruction quality and efficiency, accurately preserving static content while capturing dynamic elements.
Related papers
- Embracing Dynamics: Dynamics-aware 4D Gaussian Splatting SLAM [0.0]
D4DGS-SLAM is the first SLAM based on 4DGS map representation for dynamic environments.
By incorporating the temporal dimension into scene representation, D4DGS-SLAM enables high-quality reconstruction of dynamic scenes.
We show that our method outperforms state-of-the-art approaches in both camera pose tracking and map quality.
arXiv Detail & Related papers (2025-04-07T08:56:35Z) - SDD-4DGS: Static-Dynamic Aware Decoupling in Gaussian Splatting for 4D Scene Reconstruction [21.822062121612166]
This work introduces SDD-4DGS, the first framework for static-dynamic decoupled 4D scene reconstruction based on Gaussian Splatting.
Our approach is built upon a novel probabilistic dynamic perception coefficient that is naturally integrated into the Gaussian reconstruction pipeline.
Experiments on five benchmark datasets demonstrate that SDD-4DGS consistently outperforms state-of-the-art methods in reconstruction fidelity.
arXiv Detail & Related papers (2025-03-12T12:25:58Z) - T-3DGS: Removing Transient Objects for 3D Scene Reconstruction [83.05271859398779]
Transient objects in video sequences can significantly degrade the quality of 3D scene reconstructions.
We propose T-3DGS, a novel framework that robustly filters out transient distractors during 3D reconstruction using Gaussian Splatting.
arXiv Detail & Related papers (2024-11-29T07:45:24Z) - Event-boosted Deformable 3D Gaussians for Dynamic Scene Reconstruction [50.873820265165975]
We introduce the first approach combining event cameras, which capture high-temporal-resolution, continuous motion data, with deformable 3D-GS for dynamic scene reconstruction.
We propose a GS-Threshold Joint Modeling strategy, creating a mutually reinforcing process that greatly improves both 3D reconstruction and threshold modeling.
We contribute the first event-inclusive 4D benchmark with synthetic and real-world dynamic scenes, on which our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-11-25T08:23:38Z) - DeSiRe-GS: 4D Street Gaussians for Static-Dynamic Decomposition and Surface Reconstruction for Urban Driving Scenes [71.61083731844282]
We present DeSiRe-GS, a self-supervised gaussian splatting representation.
It enables effective static-dynamic decomposition and high-fidelity surface reconstruction in complex driving scenarios.
arXiv Detail & Related papers (2024-11-18T05:49:16Z) - DENSER: 3D Gaussians Splatting for Scene Reconstruction of Dynamic Urban Environments [0.0]
We propose DENSER, a framework that significantly enhances the representation of dynamic objects.
The proposed approach significantly outperforms state-of-the-art methods by a wide margin.
arXiv Detail & Related papers (2024-09-16T07:11:58Z) - Gaussian Splatting LK [0.11249583407496218]
This paper investigates the potential of regularizing the native warp field within the dynamic Gaussian Splatting framework.
We show that we can exploit knowledge innate to the forward warp field network to derive an analytical velocity field.
This derived Lucas-Kanade style analytical regularization enables our method to achieve superior performance in reconstructing highly dynamic scenes.
arXiv Detail & Related papers (2024-07-16T01:50:43Z) - Dynamic 3D Gaussian Fields for Urban Areas [60.64840836584623]
We present an efficient neural 3D scene representation for novel-view synthesis (NVS) in large-scale, dynamic urban areas.
We propose 4DGF, a neural scene representation that scales to large-scale dynamic urban areas.
arXiv Detail & Related papers (2024-06-05T12:07:39Z) - HUGS: Holistic Urban 3D Scene Understanding via Gaussian Splatting [53.6394928681237]
holistic understanding of urban scenes based on RGB images is a challenging yet important problem.
Our main idea involves the joint optimization of geometry, appearance, semantics, and motion using a combination of static and dynamic 3D Gaussians.
Our approach offers the ability to render new viewpoints in real-time, yielding 2D and 3D semantic information with high accuracy.
arXiv Detail & Related papers (2024-03-19T13:39:05Z) - Periodic Vibration Gaussian: Dynamic Urban Scene Reconstruction and Real-time Rendering [36.111845416439095]
We present a unified representation model, called Periodic Vibration Gaussian (PVG)
PVG builds upon the efficient 3D Gaussian splatting technique, originally designed for static scene representation.
PVG exhibits 900-fold acceleration in rendering over the best alternative.
arXiv Detail & Related papers (2023-11-30T13:53:50Z) - EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via
Self-Supervision [85.17951804790515]
EmerNeRF is a simple yet powerful approach for learning spatial-temporal representations of dynamic driving scenes.
It simultaneously captures scene geometry, appearance, motion, and semantics via self-bootstrapping.
Our method achieves state-of-the-art performance in sensor simulation.
arXiv Detail & Related papers (2023-11-03T17:59:55Z) - Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis [58.5779956899918]
We present a method that simultaneously addresses the tasks of dynamic scene novel-view synthesis and six degree-of-freedom (6-DOF) tracking of all dense scene elements.
We follow an analysis-by-synthesis framework, inspired by recent work that models scenes as a collection of 3D Gaussians.
We demonstrate a large number of downstream applications enabled by our representation, including first-person view synthesis, dynamic compositional scene synthesis, and 4D video editing.
arXiv Detail & Related papers (2023-08-18T17:59:21Z) - LoRD: Local 4D Implicit Representation for High-Fidelity Dynamic Human
Modeling [69.56581851211841]
We propose a novel Local 4D implicit Representation for Dynamic clothed human, named LoRD.
Our key insight is to encourage the network to learn the latent codes of local part-level representation.
LoRD has strong capability for representing 4D human, and outperforms state-of-the-art methods on practical applications.
arXiv Detail & Related papers (2022-08-18T03:49:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.