GAMC: An Unsupervised Method for Fake News Detection using Graph
Autoencoder with Masking
- URL: http://arxiv.org/abs/2312.05739v1
- Date: Sun, 10 Dec 2023 03:34:29 GMT
- Title: GAMC: An Unsupervised Method for Fake News Detection using Graph
Autoencoder with Masking
- Authors: Shu Yin, Chao Gao, Zhen Wang
- Abstract summary: Graph-based techniques have incorporated this social context but are limited by the need for large labeled datasets.
This paper introduces GAMC, an unsupervised fake news detection technique using the Graph Autoencoder with Masking and Contrastive learning.
By leveraging both the context and content of news propagation as self-supervised signals, our method negates the requirement for labeled datasets.
- Score: 18.783663535152158
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the rise of social media, the spread of fake news has become a
significant concern, potentially misleading public perceptions and impacting
social stability. Although deep learning methods like CNNs, RNNs, and
Transformer-based models like BERT have enhanced fake news detection, they
primarily focus on content, overlooking social context during news propagation.
Graph-based techniques have incorporated this social context but are limited by
the need for large labeled datasets. Addressing these challenges, this paper
introduces GAMC, an unsupervised fake news detection technique using the Graph
Autoencoder with Masking and Contrastive learning. By leveraging both the
context and content of news propagation as self-supervised signals, our method
negates the requirement for labeled datasets. We augment the original news
propagation graph, encode these with a graph encoder, and employ a graph
decoder for reconstruction. A unique composite loss function, including
reconstruction error and contrast loss, is designed. The method's contributions
are: introducing self-supervised learning to fake news detection, proposing a
graph autoencoder integrating two distinct losses, and validating our
approach's efficacy through real-world dataset experiments.
Related papers
- Enhancing Fake News Detection in Social Media via Label Propagation on Cross-modal Tweet Graph [19.409935976725446]
We present a novel method for detecting fake news in social media.
Our method densifies the graph's connectivity to capture denser interaction better.
We use three publicly available fake news datasets, Twitter, PHEME, and Weibo, for evaluation.
arXiv Detail & Related papers (2024-06-14T09:55:54Z) - LOSS-GAT: Label Propagation and One-Class Semi-Supervised Graph
Attention Network for Fake News Detection [2.6396287656676725]
Loss-GAT is a semi-supervised and one-class approach for fake news detection.
We employ a two-step label propagation algorithm to categorize news into two groups: interest (fake) and non-interest (real)
arXiv Detail & Related papers (2024-02-13T12:02:37Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
We introduce a novel framework called Anomaly-Denoised Autoencoders for Graph Anomaly Detection (ADA-GAD)
In the first stage, we design a learning-free anomaly-denoised augmentation method to generate graphs with reduced anomaly levels.
In the next stage, the decoders are retrained for detection on the original graph.
arXiv Detail & Related papers (2023-12-22T09:02:01Z) - GraphGuard: Detecting and Counteracting Training Data Misuse in Graph
Neural Networks [69.97213941893351]
The emergence of Graph Neural Networks (GNNs) in graph data analysis has raised critical concerns about data misuse during model training.
Existing methodologies address either data misuse detection or mitigation, and are primarily designed for local GNN models.
This paper introduces a pioneering approach called GraphGuard, to tackle these challenges.
arXiv Detail & Related papers (2023-12-13T02:59:37Z) - CONVERT:Contrastive Graph Clustering with Reliable Augmentation [110.46658439733106]
We propose a novel CONtrastiVe Graph ClustEring network with Reliable AugmenTation (CONVERT)
In our method, the data augmentations are processed by the proposed reversible perturb-recover network.
To further guarantee the reliability of semantics, a novel semantic loss is presented to constrain the network.
arXiv Detail & Related papers (2023-08-17T13:07:09Z) - Graph Global Attention Network with Memory for Fake News Detection [0.0]
The dissemination of fake information can lead to social harm and damage the credibility of information.
Deep learning has emerged as a promising approach to detect fake news.
This study proposes a new approach named GANM for fake news detection.
arXiv Detail & Related papers (2023-04-30T11:42:08Z) - Fake News Quick Detection on Dynamic Heterogeneous Information Networks [3.599616699656401]
We propose a novel Dynamic Heterogeneous Graph Neural Network (DHGNN) for fake news quick detection.
We first implement BERT and fine-tuned BERT to get a semantic representation of the news article contents and author profiles.
Then, we construct the heterogeneous news-author graph to reflect contextual information and relationships.
arXiv Detail & Related papers (2022-05-14T11:23:25Z) - A comparative analysis of Graph Neural Networks and commonly used
machine learning algorithms on fake news detection [0.0]
Low cost, simple accessibility via social platforms, and a plethora of low-budget online news sources are some of the factors that contribute to the spread of false news.
Most of the existing fake news detection algorithms are solely focused on the news content only.
engaged users prior posts or social activities provide a wealth of information about their views on news and have significant ability to improve fake news identification.
arXiv Detail & Related papers (2022-03-26T18:40:03Z) - Deep Fraud Detection on Non-attributed Graph [61.636677596161235]
Graph Neural Networks (GNNs) have shown solid performance on fraud detection.
labeled data is scarce in large-scale industrial problems, especially for fraud detection.
We propose a novel graph pre-training strategy to leverage more unlabeled data.
arXiv Detail & Related papers (2021-10-04T03:42:09Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
This work explores a deep learning approach to automatically learn the insecure patterns from code corpora.
Because code naturally admits graph structures with parsing, we develop a novel graph neural network (GNN) to exploit both the semantic context and structural regularity of a program.
arXiv Detail & Related papers (2021-09-07T21:24:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.