Camera-based 3D Semantic Scene Completion with Sparse Guidance Network
- URL: http://arxiv.org/abs/2312.05752v2
- Date: Sun, 29 Sep 2024 06:43:38 GMT
- Title: Camera-based 3D Semantic Scene Completion with Sparse Guidance Network
- Authors: Jianbiao Mei, Yu Yang, Mengmeng Wang, Junyu Zhu, Jongwon Ra, Yukai Ma, Laijian Li, Yong Liu,
- Abstract summary: We propose a camera-based semantic scene completion framework called SGN.
SGN propagates semantics from semantic-aware seed voxels to the whole scene based on spatial geometry cues.
Our experimental results demonstrate the superiority of our SGN over existing state-of-the-art methods.
- Score: 18.415854443539786
- License:
- Abstract: Semantic scene completion (SSC) aims to predict the semantic occupancy of each voxel in the entire 3D scene from limited observations, which is an emerging and critical task for autonomous driving. Recently, many studies have turned to camera-based SSC solutions due to the richer visual cues and cost-effectiveness of cameras. However, existing methods usually rely on sophisticated and heavy 3D models to process the lifted 3D features directly, which are not discriminative enough for clear segmentation boundaries. In this paper, we adopt the dense-sparse-dense design and propose a one-stage camera-based SSC framework, termed SGN, to propagate semantics from the semantic-aware seed voxels to the whole scene based on spatial geometry cues. Firstly, to exploit depth-aware context and dynamically select sparse seed voxels, we redesign the sparse voxel proposal network to process points generated by depth prediction directly with the coarse-to-fine paradigm. Furthermore, by designing hybrid guidance (sparse semantic and geometry guidance) and effective voxel aggregation for spatial geometry cues, we enhance the feature separation between different categories and expedite the convergence of semantic propagation. Finally, we devise the multi-scale semantic propagation module for flexible receptive fields while reducing the computation resources. Extensive experimental results on the SemanticKITTI and SSCBench-KITTI-360 datasets demonstrate the superiority of our SGN over existing state-of-the-art methods. And even our lightweight version SGN-L achieves notable scores of 14.80\% mIoU and 45.45\% IoU on SeamnticKITTI validation with only 12.5 M parameters and 7.16 G training memory. Code is available at https://github.com/Jieqianyu/SGN.
Related papers
- GOI: Find 3D Gaussians of Interest with an Optimizable Open-vocabulary Semantic-space Hyperplane [53.388937705785025]
3D open-vocabulary scene understanding is crucial for advancing augmented reality and robotic applications.
We introduce GOI, a framework that integrates semantic features from 2D vision-language foundation models into 3D Gaussian Splatting (3DGS)
Our method treats the feature selection process as a hyperplane division within the feature space, retaining only features that are highly relevant to the query.
arXiv Detail & Related papers (2024-05-27T18:57:18Z) - DepthSSC: Depth-Spatial Alignment and Dynamic Voxel Resolution for
Monocular 3D Semantic Scene Completion [0.4662017507844857]
DepthSSC is an advanced method for semantic scene completion solely based on monocular cameras.
It mitigates spatial misalignment and distortion issues observed in prior methods.
It demonstrates its effectiveness in capturing intricate 3D structural details and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-11-28T01:47:51Z) - SeMLaPS: Real-time Semantic Mapping with Latent Prior Networks and
Quasi-Planar Segmentation [53.83313235792596]
We present a new methodology for real-time semantic mapping from RGB-D sequences.
It combines a 2D neural network and a 3D network based on a SLAM system with 3D occupancy mapping.
Our system achieves state-of-the-art semantic mapping quality within 2D-3D networks-based systems.
arXiv Detail & Related papers (2023-06-28T22:36:44Z) - SSCBench: A Large-Scale 3D Semantic Scene Completion Benchmark for Autonomous Driving [87.8761593366609]
SSCBench is a benchmark that integrates scenes from widely used automotive datasets.
We benchmark models using monocular, trinocular, and cloud input to assess the performance gap.
We have unified semantic labels across diverse datasets to simplify cross-domain generalization testing.
arXiv Detail & Related papers (2023-06-15T09:56:33Z) - GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs [49.55919802779889]
We propose a Graph Convolution based Spatial Propagation Network (GraphCSPN) as a general approach for depth completion.
In this work, we leverage convolution neural networks as well as graph neural networks in a complementary way for geometric representation learning.
Our method achieves the state-of-the-art performance, especially when compared in the case of using only a few propagation steps.
arXiv Detail & Related papers (2022-10-19T17:56:03Z) - S3Net: 3D LiDAR Sparse Semantic Segmentation Network [1.330528227599978]
S3Net is a novel convolutional neural network for LiDAR point cloud semantic segmentation.
It adopts an encoder-decoder backbone that consists of Sparse Intra-channel Attention Module (SIntraAM) and Sparse Inter-channel Attention Module (SInterAM)
arXiv Detail & Related papers (2021-03-15T22:15:24Z) - S3CNet: A Sparse Semantic Scene Completion Network for LiDAR Point
Clouds [0.16799377888527683]
We present S3CNet, a sparse convolution based neural network that predicts the semantically completed scene from a single, unified LiDAR point cloud.
We show that our proposed method outperforms all counterparts on the 3D task, achieving state-of-the art results on the Semantic KITTI benchmark.
arXiv Detail & Related papers (2020-12-16T20:14:41Z) - Stereo RGB and Deeper LIDAR Based Network for 3D Object Detection [40.34710686994996]
3D object detection has become an emerging task in autonomous driving scenarios.
Previous works process 3D point clouds using either projection-based or voxel-based models.
We propose the Stereo RGB and Deeper LIDAR framework which can utilize semantic and spatial information simultaneously.
arXiv Detail & Related papers (2020-06-09T11:19:24Z) - Scan-based Semantic Segmentation of LiDAR Point Clouds: An Experimental
Study [2.6205925938720833]
State of the art methods use deep neural networks to predict semantic classes for each point in a LiDAR scan.
A powerful and efficient way to process LiDAR measurements is to use two-dimensional, image-like projections.
We demonstrate various techniques to boost the performance and to improve runtime as well as memory constraints.
arXiv Detail & Related papers (2020-04-06T11:08:12Z) - 3D Sketch-aware Semantic Scene Completion via Semi-supervised Structure
Prior [50.73148041205675]
The goal of the Semantic Scene Completion (SSC) task is to simultaneously predict a completed 3D voxel representation of volumetric occupancy and semantic labels of objects in the scene from a single-view observation.
We propose to devise a new geometry-based strategy to embed depth information with low-resolution voxel representation.
Our proposed geometric embedding works better than the depth feature learning from habitual SSC frameworks.
arXiv Detail & Related papers (2020-03-31T09:33:46Z) - Real-Time High-Performance Semantic Image Segmentation of Urban Street
Scenes [98.65457534223539]
We propose a real-time high-performance DCNN-based method for robust semantic segmentation of urban street scenes.
The proposed method achieves the accuracy of 73.6% and 68.0% mean Intersection over Union (mIoU) with the inference speed of 51.0 fps and 39.3 fps.
arXiv Detail & Related papers (2020-03-11T08:45:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.