Statistical Spatially Inhomogeneous Diffusion Inference
- URL: http://arxiv.org/abs/2312.05793v1
- Date: Sun, 10 Dec 2023 06:52:50 GMT
- Title: Statistical Spatially Inhomogeneous Diffusion Inference
- Authors: Yinuo Ren, Yiping Lu, Lexing Ying, Grant M. Rotskoff
- Abstract summary: Inferring a diffusion equation from discretely-observed measurements is a statistical challenge.
We propose neural network-based estimators of both the drift $boldsymbolb$ and the spatially-inhomogeneous diffusion tensor $D = SigmaSigmaT$.
- Score: 15.167120574781153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inferring a diffusion equation from discretely-observed measurements is a
statistical challenge of significant importance in a variety of fields, from
single-molecule tracking in biophysical systems to modeling financial
instruments. Assuming that the underlying dynamical process obeys a
$d$-dimensional stochastic differential equation of the form
$$\mathrm{d}\boldsymbol{x}_t=\boldsymbol{b}(\boldsymbol{x}_t)\mathrm{d}
t+\Sigma(\boldsymbol{x}_t)\mathrm{d}\boldsymbol{w}_t,$$ we propose neural
network-based estimators of both the drift $\boldsymbol{b}$ and the
spatially-inhomogeneous diffusion tensor $D = \Sigma\Sigma^{T}$ and provide
statistical convergence guarantees when $\boldsymbol{b}$ and $D$ are
$s$-H\"older continuous. Notably, our bound aligns with the minimax optimal
rate $N^{-\frac{2s}{2s+d}}$ for nonparametric function estimation even in the
presence of correlation within observational data, which necessitates careful
handling when establishing fast-rate generalization bounds. Our theoretical
results are bolstered by numerical experiments demonstrating accurate inference
of spatially-inhomogeneous diffusion tensors.
Related papers
- Dimension-free Private Mean Estimation for Anisotropic Distributions [55.86374912608193]
Previous private estimators on distributions over $mathRd suffer from a curse of dimensionality.
We present an algorithm whose sample complexity has improved dependence on dimension.
arXiv Detail & Related papers (2024-11-01T17:59:53Z) - Non-asymptotic bounds for forward processes in denoising diffusions: Ornstein-Uhlenbeck is hard to beat [49.1574468325115]
This paper presents explicit non-asymptotic bounds on the forward diffusion error in total variation (TV)
We parametrise multi-modal data distributions in terms of the distance $R$ to their furthest modes and consider forward diffusions with additive and multiplicative noise.
arXiv Detail & Related papers (2024-08-25T10:28:31Z) - Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
We study the problem of gradient descent learning of a single-index target function $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$ under isotropic Gaussian data.
We prove that a two-layer neural network optimized by an SGD-based algorithm learns $f_*$ of arbitrary link function with a sample and runtime complexity of $n asymp T asymp C(q) cdot d
arXiv Detail & Related papers (2024-06-03T17:56:58Z) - Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
This paper studies amortized sampling of the posterior over data, $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$, in a model that consists of a diffusion generative model prior $p(mathbfx)$ and a black-box constraint or function $r(mathbfx)$.
We prove the correctness of a data-free learning objective, relative trajectory balance, for training a diffusion model that samples from
arXiv Detail & Related papers (2024-05-31T16:18:46Z) - Transfer Operators from Batches of Unpaired Points via Entropic
Transport Kernels [3.099885205621181]
We derive a maximum-likelihood inference functional, propose a computationally tractable approximation and analyze their properties.
We prove a $Gamma$-convergence result showing that we can recover the true density from empirical approximations as the number $N$ of blocks goes to infinity.
arXiv Detail & Related papers (2024-02-13T12:52:41Z) - Nearly $d$-Linear Convergence Bounds for Diffusion Models via Stochastic
Localization [40.808942894229325]
We provide the first convergence bounds which are linear in the data dimension.
We show that diffusion models require at most $tilde O(fracd log2(1/delta)varepsilon2)$ steps to approximate an arbitrary distribution.
arXiv Detail & Related papers (2023-08-07T16:01:14Z) - Effective Minkowski Dimension of Deep Nonparametric Regression: Function
Approximation and Statistical Theories [70.90012822736988]
Existing theories on deep nonparametric regression have shown that when the input data lie on a low-dimensional manifold, deep neural networks can adapt to intrinsic data structures.
This paper introduces a relaxed assumption that input data are concentrated around a subset of $mathbbRd$ denoted by $mathcalS$, and the intrinsic dimension $mathcalS$ can be characterized by a new complexity notation -- effective Minkowski dimension.
arXiv Detail & Related papers (2023-06-26T17:13:31Z) - High-Dimensional Smoothed Entropy Estimation via Dimensionality
Reduction [14.53979700025531]
We consider the estimation of the differential entropy $h(X+Z)$ via $n$ independently and identically distributed samples of $X$.
Under the absolute-error loss, the above problem has a parametric estimation rate of $fraccDsqrtn$.
We overcome this exponential sample complexity by projecting $X$ to a low-dimensional space via principal component analysis (PCA) before the entropy estimation.
arXiv Detail & Related papers (2023-05-08T13:51:48Z) - Augmenting astrophysical scaling relations with machine learning :
application to reducing the SZ flux-mass scatter [2.0223261087090303]
We study the Sunyaev-Zeldovich flux$-$cluster mass relation ($Y_mathrmSZ-M$)
We find a new proxy for cluster mass which combines $Y_mathrmSZ$ and concentration of ionized gas.
We show that the dependence on $c_mathrmgas$ is linked to cores of clusters exhibiting larger scatter than their outskirts.
arXiv Detail & Related papers (2022-01-04T19:00:01Z) - Agnostic Learning of a Single Neuron with Gradient Descent [92.7662890047311]
We consider the problem of learning the best-fitting single neuron as measured by the expected square loss.
For the ReLU activation, our population risk guarantee is $O(mathsfOPT1/2)+epsilon$.
For the ReLU activation, our population risk guarantee is $O(mathsfOPT1/2)+epsilon$.
arXiv Detail & Related papers (2020-05-29T07:20:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.