Three-dimensional numerical schemes for the segmentation of the psoas
muscle in X-ray computed tomography images
- URL: http://arxiv.org/abs/2312.05887v1
- Date: Sun, 10 Dec 2023 13:37:39 GMT
- Title: Three-dimensional numerical schemes for the segmentation of the psoas
muscle in X-ray computed tomography images
- Authors: Giulio Paolucci, Isabella Cama, Cristina Campi, Michele Piana
- Abstract summary: The analysis of the psoas muscle in morphological and functional imaging has proved to be an accurate approach to assess sarcopenia.
The present study utilizes three-dimensional numerical schemes for psoas segmentation in low-dose X-ray computed tomography images.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The analysis of the psoas muscle in morphological and functional imaging has
proved to be an accurate approach to assess sarcopenia, i.e. a systemic loss of
skeletal muscle mass and function that may be correlated to multifactorial
etiological aspects. The inclusion of sarcopenia assessment into a radiological
workflow would need the implementation of computational pipelines for image
processing that guarantee segmentation reliability and a significant degree of
automation. The present study utilizes three-dimensional numerical schemes for
psoas segmentation in low-dose X-ray computed tomography images. Specifically,
here we focused on the level set methodology and compared the performances of
two standard approaches, a classical evolution model and a three-dimension
geodesic model, with the performances of an original first-order modification
of this latter one. The results of this analysis show that these gradient-based
schemes guarantee reliability with respect to manual segmentation and that the
first-order scheme requires a computational burden that is significantly
smaller than the one needed by the second-order approach.
Related papers
- Abnormality-Driven Representation Learning for Radiology Imaging [0.8321462983924758]
We introduce lesion-enhanced contrastive learning (LeCL), a novel approach to obtain visual representations driven by abnormalities in 2D axial slices across different locations of the CT scans.
We evaluate our approach across three clinical tasks: tumor lesion location, lung disease detection, and patient staging, benchmarking against four state-of-the-art foundation models.
arXiv Detail & Related papers (2024-11-25T13:53:26Z) - ShapeMamba-EM: Fine-Tuning Foundation Model with Local Shape Descriptors and Mamba Blocks for 3D EM Image Segmentation [49.42525661521625]
This paper presents ShapeMamba-EM, a specialized fine-tuning method for 3D EM segmentation.
It is tested over a wide range of EM images, covering five segmentation tasks and 10 datasets.
arXiv Detail & Related papers (2024-08-26T08:59:22Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - Robust Implementation of Foreground Extraction and Vessel Segmentation
for X-ray Coronary Angiography Image Sequence [4.653742319057035]
The extraction of contrast-filled vessels from X-ray coronary angiography(XCA) image sequence has important clinical significance.
We propose a novel method for vessel layer extraction based on tensor robust principal component analysis(TRPCA)
For the vessel images with uneven contrast distribution, a two-stage region growth(TSRG) method is utilized for vessel enhancement and segmentation.
arXiv Detail & Related papers (2022-09-15T12:07:09Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Synthetic Generation of Three-Dimensional Cancer Cell Models from
Histopathological Images [19.778965983551114]
We propose a novel framework to generate synthetic three-dimensional histological models based on a generator-discriminator pattern.
The proposed algorithms achieves high quantitative and qualitative synthesis evident in comparative evaluation metrics such as a low Frechet-Inception scores.
arXiv Detail & Related papers (2021-01-26T14:00:00Z) - Enhanced 3D Myocardial Strain Estimation from Multi-View 2D CMR Imaging [0.0]
We propose an enhanced 3D myocardial strain estimation procedure, which combines complementary displacement information from multiple orientations of a single imaging modality (untagged CMR SSFP images)
We register the sets of short-axis, four-chamber and two-chamber views via a 2D non-rigid registration algorithm implemented in a commercial software (Segment, Medviso)
We then create a series of interpolating functions for the three directions of motion and use them to deform a tetrahedral mesh representation of a patient-specific left ventricle.
arXiv Detail & Related papers (2020-09-25T22:47:50Z) - Multi-structure bone segmentation in pediatric MR images with combined
regularization from shape priors and adversarial network [0.4588028371034407]
We propose a new pre-trained regularized convolutional encoder-decoder network for the challenging task of segmenting heterogeneous pediatric magnetic resonance (MR) images.
In order to obtain globally consistent predictions, we incorporate a shape priors based regularization, derived from a non-linear shape representation learnt by an auto-encoder.
The proposed method performed either better or at par with previously proposed approaches for Dice, sensitivity, specificity, maximum symmetric surface distance, average symmetric surface distance, and relative absolute volume difference metrics.
arXiv Detail & Related papers (2020-09-15T13:39:53Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
We propose a method to model 3D MR brain volumes distribution by combining a 2D slice VAE with a Gaussian model that captures the relationships between slices.
We also introduce a novel evaluation method for generated volumes that quantifies how well their segmentations match those of true brain anatomy.
arXiv Detail & Related papers (2020-07-09T13:23:15Z) - Unsupervised Instance Segmentation in Microscopy Images via Panoptic
Domain Adaptation and Task Re-weighting [86.33696045574692]
We propose a Cycle Consistency Panoptic Domain Adaptive Mask R-CNN (CyC-PDAM) architecture for unsupervised nuclei segmentation in histopathology images.
We first propose a nuclei inpainting mechanism to remove the auxiliary generated objects in the synthesized images.
Secondly, a semantic branch with a domain discriminator is designed to achieve panoptic-level domain adaptation.
arXiv Detail & Related papers (2020-05-05T11:08:26Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.