論文の概要: SuperPrimitive: Scene Reconstruction at a Primitive Level
- arxiv url: http://arxiv.org/abs/2312.05889v2
- Date: Wed, 17 Apr 2024 16:13:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 19:10:55.513012
- Title: SuperPrimitive: Scene Reconstruction at a Primitive Level
- Title(参考訳): SuperPrimitive: 原始レベルでのシーン再構築
- Authors: Kirill Mazur, Gwangbin Bae, Andrew J. Davison,
- Abstract要約: 共同カメラのポーズと画像やモノクロビデオからの密度の高い幾何学的推定は依然として難しい問題である。
多くの高密度増分再構成システムは、画像画素を直接操作し、多視点幾何学的手がかりを用いて3次元位置を解く。
我々はスーパープリミティブ(SuperPrimitive)と呼ばれる新しいイメージ表現でこの問題に対処する。
- 参考スコア(独自算出の注目度): 23.934492494774116
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Joint camera pose and dense geometry estimation from a set of images or a monocular video remains a challenging problem due to its computational complexity and inherent visual ambiguities. Most dense incremental reconstruction systems operate directly on image pixels and solve for their 3D positions using multi-view geometry cues. Such pixel-level approaches suffer from ambiguities or violations of multi-view consistency (e.g. caused by textureless or specular surfaces). We address this issue with a new image representation which we call a SuperPrimitive. SuperPrimitives are obtained by splitting images into semantically correlated local regions and enhancing them with estimated surface normal directions, both of which are predicted by state-of-the-art single image neural networks. This provides a local geometry estimate per SuperPrimitive, while their relative positions are adjusted based on multi-view observations. We demonstrate the versatility of our new representation by addressing three 3D reconstruction tasks: depth completion, few-view structure from motion, and monocular dense visual odometry.
- Abstract(参考訳): 連写カメラのポーズと画像やモノクロビデオからの密度の高い幾何学的推定は、その計算複雑性と固有の視覚的曖昧さのため、依然として難しい問題である。
多くの高密度増分再構成システムは、画像画素を直接操作し、多視点幾何学的手がかりを用いて3次元位置を解く。
このようなピクセルレベルのアプローチは、多視点整合性の曖昧さや違反(例えば、テクスチャレスや特異面によって引き起こされる)に悩まされる。
我々はスーパープリミティブ(SuperPrimitive)と呼ばれる新しいイメージ表現でこの問題に対処する。
超プリミティブは、イメージを意味的に相関した局所領域に分割し、それらを予測された表面正規方向で拡張することで得られる。
これはスーパープリミティブ当たりの局所幾何学的推定を提供し、相対的な位置は多視点観測に基づいて調整される。
本研究は,3つの3次元再構成タスク,奥行きの完了,動きからの少数視点構造,モノクロ高密度視覚計測の3つの課題に対処することで,新しい表現の汎用性を実証する。
関連論文リスト
- Large Spatial Model: End-to-end Unposed Images to Semantic 3D [79.94479633598102]
大空間モデル(LSM)は、RGB画像を直接意味的放射場に処理する。
LSMは、単一のフィードフォワード操作における幾何学、外観、意味を同時に推定する。
新しい視点で言語と対話することで、多目的ラベルマップを生成することができる。
論文 参考訳(メタデータ) (2024-10-24T17:54:42Z) - DoubleTake: Geometry Guided Depth Estimation [17.464549832122714]
RGB画像の列から深度を推定することは、基本的なコンピュータビジョンタスクである。
本稿では,現在のカメラ位置から深度マップとして描画された,ボリューム特徴と先行幾何学のヒントを組み合わせた再構成手法を提案する。
本手法は, オフライン・インクリメンタルな評価シナリオにおいて, 対話的な速度, 最先端の深度推定, および3次元シーンで動作可能であることを示す。
論文 参考訳(メタデータ) (2024-06-26T14:29:05Z) - RelPose++: Recovering 6D Poses from Sparse-view Observations [66.6922660401558]
スパースビュー画像集合(2-8画像)から6次元カメラポーズを推定する作業に対処する。
我々は,画像対上の相対回転よりも分布を推定するネットワークを学習するRelPoseフレームワークを構築した。
最終システムは,先行技術よりも6次元ポーズ予測を大幅に改善する。
論文 参考訳(メタデータ) (2023-05-08T17:59:58Z) - Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
シングルビュー3Dメッシュ再構成は、シングルビューRGB画像から3D形状を復元することを目的とした、基本的なコンピュータビジョンタスクである。
本稿では,一視点3Dメッシュ再構成に取り組み,未知のカテゴリのモデル一般化について検討する。
我々は、再構築におけるカテゴリ境界を断ち切るために、エンドツーエンドの2段階ネットワークであるGenMeshを提案する。
論文 参考訳(メタデータ) (2022-08-04T14:13:35Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
最先端のニューラル暗黙法は、多くの入力ビューから単純なシーンの高品質な再構築を可能にする。
これは主に、十分な制約を提供していないRGB再構築損失の固有の曖昧さによって引き起こされる。
近年の単分子形状予測の分野での進歩に触発され, ニューラルな暗黙的表面再構成の改善にこれらの方法が役立つかを探究する。
論文 参考訳(メタデータ) (2022-06-01T17:58:15Z) - GeoFill: Reference-Based Image Inpainting of Scenes with Complex
Geometry [40.68659515139644]
参照誘導画像描画は、他の参照画像からのコンテンツを活用して画像画素を復元する。
我々は、単眼深度推定を利用して、カメラ間の相対的なポーズを予測し、その基準画像を異なる3次元再投影により目標に整列させる。
提案手法は,RealEstate10KとMannequinChallengeの両方のデータセットに対して,大規模なベースライン,複雑な幾何学,極端なカメラモーションによる最先端性能を実現する。
論文 参考訳(メタデータ) (2022-01-20T12:17:13Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
1つ以上の視点から見れば、新しいオブジェクトの3次元パラメトリック表面表現を学習する際の課題について検討する。
ビュー間で一貫した高品質なパラメトリックな3次元表面を生成できるニューラルネットワークを設計する。
提案手法は,共通対象カテゴリからの形状の公開データセットに基づいて,教師と訓練を行う。
論文 参考訳(メタデータ) (2020-08-18T06:33:40Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
本稿では,任意の物体の高品質な形状と複雑な空間変化を持つBRDFを再構成する学習に基づく新しい手法を提案する。
まず、深層多視点ステレオネットワークを用いて、ビューごとの深度マップを推定する。
これらの深度マップは、異なるビューを粗く整列するために使用される。
本稿では,新しい多視点反射率推定ネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-03-27T21:28:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。