論文の概要: ASH: Animatable Gaussian Splats for Efficient and Photoreal Human Rendering
- arxiv url: http://arxiv.org/abs/2312.05941v2
- Date: Mon, 15 Apr 2024 07:59:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 22:57:53.171937
- Title: ASH: Animatable Gaussian Splats for Efficient and Photoreal Human Rendering
- Title(参考訳): ASH: 効率的でフォトリアルな人間レンダリングのためのアニマブルなガウススプラッター
- Authors: Haokai Pang, Heming Zhu, Adam Kortylewski, Christian Theobalt, Marc Habermann,
- Abstract要約: 本稿では,動的人間をリアルタイムに写実的にレンダリングするためのアニマタブルなガウススプラッティング手法を提案する。
我々は、被服をアニマタブルな3Dガウスとしてパラメータ化し、画像空間に効率よく切り込み、最終的なレンダリングを生成する。
我々は、ポーズ制御可能なアバターの競合手法を用いてASHをベンチマークし、我々の手法が既存のリアルタイムメソッドよりも大きなマージンで優れており、オフラインメソッドよりも同等またはそれ以上の結果を示すことを示した。
- 参考スコア(独自算出の注目度): 62.81677824868519
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-time rendering of photorealistic and controllable human avatars stands as a cornerstone in Computer Vision and Graphics. While recent advances in neural implicit rendering have unlocked unprecedented photorealism for digital avatars, real-time performance has mostly been demonstrated for static scenes only. To address this, we propose ASH, an animatable Gaussian splatting approach for photorealistic rendering of dynamic humans in real-time. We parameterize the clothed human as animatable 3D Gaussians, which can be efficiently splatted into image space to generate the final rendering. However, naively learning the Gaussian parameters in 3D space poses a severe challenge in terms of compute. Instead, we attach the Gaussians onto a deformable character model, and learn their parameters in 2D texture space, which allows leveraging efficient 2D convolutional architectures that easily scale with the required number of Gaussians. We benchmark ASH with competing methods on pose-controllable avatars, demonstrating that our method outperforms existing real-time methods by a large margin and shows comparable or even better results than offline methods.
- Abstract(参考訳): リアルでコントロール可能な人間のアバターのリアルタイムレンダリングは、コンピュータビジョンとグラフィックの基盤となっている。
ニューラル暗黙的レンダリングの最近の進歩は、デジタルアバターに対する前例のないフォトリアリズムを解き放つ一方で、リアルタイムのパフォーマンスは静的なシーンでのみ実証されている。
そこで本研究では,動的人間をリアルタイムに写実的にレンダリングするための,アニマタブルなガウススプラッティング手法であるASHを提案する。
我々は、被服をアニマタブルな3Dガウスとしてパラメータ化し、画像空間に効率よく切り込み、最終的なレンダリングを生成する。
しかし、3次元空間におけるガウスのパラメータをネーティブに学習することは、計算の分野で深刻な課題となる。
代わりに、変形可能なキャラクタモデルにガウスをアタッチし、2次元テクスチャ空間でそれらのパラメータを学習することで、ガウスの必要な数で容易にスケールできる効率的な2次元畳み込みアーキテクチャを実現できる。
我々は、ポーズ制御可能なアバターの競合手法を用いてASHをベンチマークし、我々の手法が既存のリアルタイムメソッドを大きなマージンで上回り、オフラインメソッドよりも同等あるいはそれ以上の結果を示すことを示した。
関連論文リスト
- Generalizable and Animatable Gaussian Head Avatar [50.34788590904843]
本稿では,GAGAvatar(Generalizable and Animatable Gaussian Head Avatar)を提案する。
我々は、1つの前方通過で1つの画像から3次元ガウスのパラメータを生成する。
提案手法は, 従来の手法と比較して, 再現性や表現精度の点で優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-10T14:29:00Z) - iHuman: Instant Animatable Digital Humans From Monocular Videos [16.98924995658091]
モノクロビデオからアニマタブルな3Dデジタル人間を作るための,迅速かつシンプルで効果的な方法を提案する。
この研究は、人間の身体の正確な3Dメッシュ型モデリングの必要性を達成し、説明します。
我々の手法は(訓練時間の観点から)最も近い競合相手よりも桁違いに高速である。
論文 参考訳(メタデータ) (2024-07-15T18:51:51Z) - Deformable 3D Gaussian Splatting for Animatable Human Avatars [50.61374254699761]
本稿では,デジタルアバターを単一単分子配列で構築する手法を提案する。
ParDy-Humanは、リアルなダイナミックな人間のアバターの明示的なモデルを構成する。
当社のアバター学習には,Splatマスクなどの追加アノテーションが不要であり,ユーザのハードウェア上でも,フル解像度の画像を効率的に推測しながら,さまざまなバックグラウンドでトレーニングすることが可能である。
論文 参考訳(メタデータ) (2023-12-22T20:56:46Z) - GAvatar: Animatable 3D Gaussian Avatars with Implicit Mesh Learning [60.33970027554299]
ガウススプラッティングは、明示的(メッシュ)と暗黙的(NeRF)の両方の3D表現の利点を利用する強力な3D表現として登場した。
本稿では,ガウススプラッティングを利用してテキスト記述から現実的なアニマタブルなアバターを生成する。
提案手法であるGAvatarは,テキストプロンプトのみを用いて,多様なアニマタブルアバターを大規模に生成する。
論文 参考訳(メタデータ) (2023-12-18T18:59:12Z) - 3DGS-Avatar: Animatable Avatars via Deformable 3D Gaussian Splatting [32.63571465495127]
3Dガウススプラッティング(3DGS)を用いた単眼ビデオからアニマタブルな人間のアバターを作成する手法を提案する。
我々は、30分以内でトレーニングでき、リアルタイムフレームレート(50以上のFPS)でレンダリングできる非剛性ネットワークを学習する。
実験結果から,本手法は単分子入力によるアニマタブルアバター生成に対する最先端手法と比較して,同等,さらに優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-12-14T18:54:32Z) - GaussianAvatars: Photorealistic Head Avatars with Rigged 3D Gaussians [41.378083782290545]
本稿では,表現,ポーズ,視点の面で完全に制御可能な光現実的頭部アバターを作成するための新しい手法を提案する。
中心となる考え方は、3次元ガウスのスプレートをパラメトリックな形態素面モデルに組み込んだ動的3次元表現である。
我々は、いくつかの挑戦的なシナリオにおいて、フォトリアリスティックアバターのアニメーション能力を実演する。
論文 参考訳(メタデータ) (2023-12-04T17:28:35Z) - GETAvatar: Generative Textured Meshes for Animatable Human Avatars [69.56959932421057]
高品質なジオメトリとテクスチャを備えたアニマタブルな人体アバターを製作することを目的とした,3D対応フルボディヒューマンジェネレーションの課題について検討した。
アニマタブルなヒトアバターの3Dレンダリングを直接生成する生成モデルであるGETAvatarを提案する。
論文 参考訳(メタデータ) (2023-10-04T10:30:24Z) - DRaCoN -- Differentiable Rasterization Conditioned Neural Radiance
Fields for Articulated Avatars [92.37436369781692]
フルボディの体積アバターを学習するためのフレームワークであるDRaCoNを提案する。
2Dと3Dのニューラルレンダリング技術の利点を利用する。
挑戦的なZJU-MoCapとHuman3.6Mデータセットの実験は、DRaCoNが最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2022-03-29T17:59:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。