ASH: Animatable Gaussian Splats for Efficient and Photoreal Human Rendering
- URL: http://arxiv.org/abs/2312.05941v2
- Date: Mon, 15 Apr 2024 07:59:37 GMT
- Title: ASH: Animatable Gaussian Splats for Efficient and Photoreal Human Rendering
- Authors: Haokai Pang, Heming Zhu, Adam Kortylewski, Christian Theobalt, Marc Habermann,
- Abstract summary: We propose an animatable Gaussian splatting approach for photorealistic rendering of dynamic humans in real-time.
We parameterize the clothed human as animatable 3D Gaussians, which can be efficiently splatted into image space to generate the final rendering.
We benchmark ASH with competing methods on pose-controllable avatars, demonstrating that our method outperforms existing real-time methods by a large margin and shows comparable or even better results than offline methods.
- Score: 62.81677824868519
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-time rendering of photorealistic and controllable human avatars stands as a cornerstone in Computer Vision and Graphics. While recent advances in neural implicit rendering have unlocked unprecedented photorealism for digital avatars, real-time performance has mostly been demonstrated for static scenes only. To address this, we propose ASH, an animatable Gaussian splatting approach for photorealistic rendering of dynamic humans in real-time. We parameterize the clothed human as animatable 3D Gaussians, which can be efficiently splatted into image space to generate the final rendering. However, naively learning the Gaussian parameters in 3D space poses a severe challenge in terms of compute. Instead, we attach the Gaussians onto a deformable character model, and learn their parameters in 2D texture space, which allows leveraging efficient 2D convolutional architectures that easily scale with the required number of Gaussians. We benchmark ASH with competing methods on pose-controllable avatars, demonstrating that our method outperforms existing real-time methods by a large margin and shows comparable or even better results than offline methods.
Related papers
- Generalizable and Animatable Gaussian Head Avatar [50.34788590904843]
We propose Generalizable and Animatable Gaussian head Avatar (GAGAvatar) for one-shot animatable head avatar reconstruction.
We generate the parameters of 3D Gaussians from a single image in a single forward pass.
Our method exhibits superior performance compared to previous methods in terms of reconstruction quality and expression accuracy.
arXiv Detail & Related papers (2024-10-10T14:29:00Z) - iHuman: Instant Animatable Digital Humans From Monocular Videos [16.98924995658091]
We present a fast, simple, yet effective method for creating animatable 3D digital humans from monocular videos.
This work achieves and illustrates the need of accurate 3D mesh-type modelling of the human body.
Our method is faster by an order of magnitude (in terms of training time) than its closest competitor.
arXiv Detail & Related papers (2024-07-15T18:51:51Z) - Deformable 3D Gaussian Splatting for Animatable Human Avatars [50.61374254699761]
We propose a fully explicit approach to construct a digital avatar from as little as a single monocular sequence.
ParDy-Human constitutes an explicit model for realistic dynamic human avatars which requires significantly fewer training views and images.
Our avatars learning is free of additional annotations such as Splat masks and can be trained with variable backgrounds while inferring full-resolution images efficiently even on consumer hardware.
arXiv Detail & Related papers (2023-12-22T20:56:46Z) - GAvatar: Animatable 3D Gaussian Avatars with Implicit Mesh Learning [60.33970027554299]
Gaussian splatting has emerged as a powerful 3D representation that harnesses the advantages of both explicit (mesh) and implicit (NeRF) 3D representations.
In this paper, we seek to leverage Gaussian splatting to generate realistic animatable avatars from textual descriptions.
Our proposed method, GAvatar, enables the large-scale generation of diverse animatable avatars using only text prompts.
arXiv Detail & Related papers (2023-12-18T18:59:12Z) - 3DGS-Avatar: Animatable Avatars via Deformable 3D Gaussian Splatting [32.63571465495127]
We introduce an approach that creates animatable human avatars from monocular videos using 3D Gaussian Splatting (3DGS)
We learn a non-rigid network to reconstruct animatable clothed human avatars that can be trained within 30 minutes and rendered at real-time frame rates (50+ FPS)
Experimental results show that our method achieves comparable and even better performance compared to state-of-the-art approaches on animatable avatar creation from a monocular input.
arXiv Detail & Related papers (2023-12-14T18:54:32Z) - GaussianAvatars: Photorealistic Head Avatars with Rigged 3D Gaussians [41.378083782290545]
We introduce a new method to create photorealistic head avatars that are fully controllable in terms of expression, pose, and viewpoint.
The core idea is a dynamic 3D representation based on 3D Gaussian splats rigged to a parametric morphable face model.
We demonstrate the animation capabilities of our photorealistic avatar in several challenging scenarios.
arXiv Detail & Related papers (2023-12-04T17:28:35Z) - GETAvatar: Generative Textured Meshes for Animatable Human Avatars [69.56959932421057]
We study the problem of 3D-aware full-body human generation, aiming at creating animatable human avatars with high-quality geometries and textures.
We propose GETAvatar, a Generative model that directly generates Explicit Textured 3D rendering for animatable human Avatar.
arXiv Detail & Related papers (2023-10-04T10:30:24Z) - DRaCoN -- Differentiable Rasterization Conditioned Neural Radiance
Fields for Articulated Avatars [92.37436369781692]
We present DRaCoN, a framework for learning full-body volumetric avatars.
It exploits the advantages of both the 2D and 3D neural rendering techniques.
Experiments on the challenging ZJU-MoCap and Human3.6M datasets indicate that DRaCoN outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T17:59:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.