3DGS-Avatar: Animatable Avatars via Deformable 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2312.09228v3
- Date: Thu, 4 Apr 2024 15:06:02 GMT
- Title: 3DGS-Avatar: Animatable Avatars via Deformable 3D Gaussian Splatting
- Authors: Zhiyin Qian, Shaofei Wang, Marko Mihajlovic, Andreas Geiger, Siyu Tang,
- Abstract summary: We introduce an approach that creates animatable human avatars from monocular videos using 3D Gaussian Splatting (3DGS)
We learn a non-rigid network to reconstruct animatable clothed human avatars that can be trained within 30 minutes and rendered at real-time frame rates (50+ FPS)
Experimental results show that our method achieves comparable and even better performance compared to state-of-the-art approaches on animatable avatar creation from a monocular input.
- Score: 32.63571465495127
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce an approach that creates animatable human avatars from monocular videos using 3D Gaussian Splatting (3DGS). Existing methods based on neural radiance fields (NeRFs) achieve high-quality novel-view/novel-pose image synthesis but often require days of training, and are extremely slow at inference time. Recently, the community has explored fast grid structures for efficient training of clothed avatars. Albeit being extremely fast at training, these methods can barely achieve an interactive rendering frame rate with around 15 FPS. In this paper, we use 3D Gaussian Splatting and learn a non-rigid deformation network to reconstruct animatable clothed human avatars that can be trained within 30 minutes and rendered at real-time frame rates (50+ FPS). Given the explicit nature of our representation, we further introduce as-isometric-as-possible regularizations on both the Gaussian mean vectors and the covariance matrices, enhancing the generalization of our model on highly articulated unseen poses. Experimental results show that our method achieves comparable and even better performance compared to state-of-the-art approaches on animatable avatar creation from a monocular input, while being 400x and 250x faster in training and inference, respectively.
Related papers
- Generalizable and Animatable Gaussian Head Avatar [50.34788590904843]
We propose Generalizable and Animatable Gaussian head Avatar (GAGAvatar) for one-shot animatable head avatar reconstruction.
We generate the parameters of 3D Gaussians from a single image in a single forward pass.
Our method exhibits superior performance compared to previous methods in terms of reconstruction quality and expression accuracy.
arXiv Detail & Related papers (2024-10-10T14:29:00Z) - DreamWaltz-G: Expressive 3D Gaussian Avatars from Skeleton-Guided 2D
Diffusion [69.67970568012599]
We present DreamWaltz-G, a novel learning framework for animatable 3D avatar generation from text.
The core of this framework lies in Score Distillation and Hybrid 3D Gaussian Avatar representation.
Our framework further supports diverse applications, including human video reenactment and multi-subject scene composition.
arXiv Detail & Related papers (2024-09-25T17:59:45Z) - Gaussian Deja-vu: Creating Controllable 3D Gaussian Head-Avatars with Enhanced Generalization and Personalization Abilities [10.816370283498287]
We introduce the "Gaussian Deja-vu" framework, which first obtains a generalized model of the head avatar and then personalizes the result.
For personalizing, we propose learnable expression-aware rectification blendmaps, ensuring rapid convergence without the reliance on neural networks.
It outperforms state-of-the-art 3D Gaussian head avatars in terms of photorealistic quality as well as reduces training time consumption to at least a quarter of the existing methods.
arXiv Detail & Related papers (2024-09-23T00:11:30Z) - Human101: Training 100+FPS Human Gaussians in 100s from 1 View [35.77485300265528]
We introduce Human101, a novel framework adept at producing high-fidelity dynamic 3D human reconstructions from 1-view videos.
Our method leverages the strengths of 3D Gaussian Splatting, which provides an explicit and efficient representation of 3D humans.
Human101 clocked up to a 10 times surge in frames per second and delivered comparable or superior rendering quality.
arXiv Detail & Related papers (2023-12-23T13:41:56Z) - Splatter Image: Ultra-Fast Single-View 3D Reconstruction [67.96212093828179]
Splatter Image is based on Gaussian Splatting, which allows fast and high-quality reconstruction of 3D scenes from multiple images.
We learn a neural network that, at test time, performs reconstruction in a feed-forward manner, at 38 FPS.
On several synthetic, real, multi-category and large-scale benchmark datasets, we achieve better results in terms of PSNR, LPIPS, and other metrics while training and evaluating much faster than prior works.
arXiv Detail & Related papers (2023-12-20T16:14:58Z) - GAvatar: Animatable 3D Gaussian Avatars with Implicit Mesh Learning [60.33970027554299]
Gaussian splatting has emerged as a powerful 3D representation that harnesses the advantages of both explicit (mesh) and implicit (NeRF) 3D representations.
In this paper, we seek to leverage Gaussian splatting to generate realistic animatable avatars from textual descriptions.
Our proposed method, GAvatar, enables the large-scale generation of diverse animatable avatars using only text prompts.
arXiv Detail & Related papers (2023-12-18T18:59:12Z) - ASH: Animatable Gaussian Splats for Efficient and Photoreal Human Rendering [62.81677824868519]
We propose an animatable Gaussian splatting approach for photorealistic rendering of dynamic humans in real-time.
We parameterize the clothed human as animatable 3D Gaussians, which can be efficiently splatted into image space to generate the final rendering.
We benchmark ASH with competing methods on pose-controllable avatars, demonstrating that our method outperforms existing real-time methods by a large margin and shows comparable or even better results than offline methods.
arXiv Detail & Related papers (2023-12-10T17:07:37Z) - GauHuman: Articulated Gaussian Splatting from Monocular Human Videos [58.553979884950834]
GauHuman is a 3D human model with Gaussian Splatting for both fast training (1 2 minutes) and real-time rendering (up to 189 FPS)
GauHuman encodes Gaussian Splatting in the canonical space and transforms 3D Gaussians from canonical space to posed space with linear blend skinning (LBS)
Experiments on ZJU_Mocap and MonoCap datasets demonstrate that GauHuman achieves state-of-the-art performance quantitatively and qualitatively with fast training and real-time rendering speed.
arXiv Detail & Related papers (2023-12-05T18:59:14Z) - Animatable 3D Gaussian: Fast and High-Quality Reconstruction of Multiple Human Avatars [18.55354901614876]
We propose Animatable 3D Gaussian, which learns human avatars from input images and poses.
On both novel view synthesis and novel pose synthesis tasks, our method achieves higher reconstruction quality than InstantAvatar with less training time.
Our method can be easily extended to multi-human scenes and achieve comparable novel view synthesis results on a scene with ten people in only 25 seconds of training.
arXiv Detail & Related papers (2023-11-27T08:17:09Z) - Drivable 3D Gaussian Avatars [26.346626608626057]
Current drivable avatars require either accurate 3D registrations during training, dense input images during testing, or both.
This work uses the recently presented 3D Gaussian Splatting (3DGS) technique to render realistic humans at real-time framerates.
Given their smaller size, we drive these deformations with joint angles and keypoints, which are more suitable for communication applications.
arXiv Detail & Related papers (2023-11-14T22:54:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.