論文の概要: FM-G-CAM: A Holistic Approach for Explainable AI in Computer Vision
- arxiv url: http://arxiv.org/abs/2312.05975v2
- Date: Sat, 13 Apr 2024 10:45:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 22:57:53.111416
- Title: FM-G-CAM: A Holistic Approach for Explainable AI in Computer Vision
- Title(参考訳): FM-G-CAM:コンピュータビジョンにおける説明可能なAIの全体的アプローチ
- Authors: Ravidu Suien Rammuni Silva, Jordan J. Bird,
- Abstract要約: 我々は,コンピュータビジョンモデル,特に畳み込みニューラルネットワーク(CNN)に基づくモデルの予測を理解する必要性を強調した。
既存のCNN予測法は、主にグラディエント重み付きクラスアクティベーションマップ(Grad-CAM)に基づいており、単一のターゲットクラスのみに焦点を当てている。
本稿では,複数の上位予測クラスを考慮したFused Multi-class Gradient-weighted Class Activation Map (FM-G-CAM)を提案する。
- 参考スコア(独自算出の注目度): 0.6215404942415159
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explainability is an aspect of modern AI that is vital for impact and usability in the real world. The main objective of this paper is to emphasise the need to understand the predictions of Computer Vision models, specifically Convolutional Neural Network (CNN) based models. Existing methods of explaining CNN predictions are mostly based on Gradient-weighted Class Activation Maps (Grad-CAM) and solely focus on a single target class. We show that from the point of the target class selection, we make an assumption on the prediction process, hence neglecting a large portion of the predictor CNN model's thinking process. In this paper, we present an exhaustive methodology called Fused Multi-class Gradient-weighted Class Activation Map (FM-G-CAM) that considers multiple top predicted classes, which provides a holistic explanation of the predictor CNN's thinking rationale. We also provide a detailed and comprehensive mathematical and algorithmic description of our method. Furthermore, along with a concise comparison of existing methods, we compare FM-G-CAM with Grad-CAM, highlighting its benefits through real-world practical use cases. Finally, we present an open-source Python library with FM-G-CAM implementation to conveniently generate saliency maps for CNN-based model predictions.
- Abstract(参考訳): 説明可能性(Explainability)は、現実世界のインパクトとユーザビリティに不可欠な、現代のAIの側面である。
本研究の目的は,コンピュータビジョンモデル,特に畳み込みニューラルネットワーク(CNN)に基づくモデルの予測を理解する必要性を強調することである。
既存のCNN予測法は、主にグラディエント重み付きクラスアクティベーションマップ(Grad-CAM)に基づいており、単一のターゲットクラスのみに焦点を当てている。
対象とするクラス選択の観点から予測過程を仮定し,CNNモデルの思考過程の大部分を無視することを示す。
本稿では,複数の上位予測クラスを考察したFused Multi-class Gradient-weighted Class Activation Map (FM-G-CAM)を提案する。
また,本手法の詳細な数学的,包括的,アルゴリズム的な記述も提供する。
さらに,既存の手法の簡潔な比較とともに,FM-G-CAMとGrad-CAMを比較し,現実の実践的ユースケースによるメリットを強調した。
最後に,FM-G-CAMを実装したオープンソースのPythonライブラリを提案する。
関連論文リスト
- KPCA-CAM: Visual Explainability of Deep Computer Vision Models using Kernel PCA [1.5550533143704957]
本研究では,畳み込みニューラルネットワーク(CNN)の解釈可能性を高める技術であるKPCA-CAMを紹介する。
KPCA-CAMは、CNNアクティベーション内の非線形関係をより効率的に捉えるために、主成分分析(PCA)とカーネルトリックを利用する。
異なるCNNモデルにわたるILSVRCデータセットに関する実証的な評価は、KPCA-CAMがより正確なアクティベーションマップを生成することを示す。
論文 参考訳(メタデータ) (2024-09-30T22:36:37Z) - Generalizing GradCAM for Embedding Networks [0.0]
本稿では,組込みネットワークのためのGrad-CAMを一般化した EmbeddingCAM を提案する。
提案手法の有効性をCUB-200-2011データセットに示すとともに,そのデータセットに対する定量的,定性的な分析結果を示す。
論文 参考訳(メタデータ) (2024-02-01T04:58:06Z) - BroadCAM: Outcome-agnostic Class Activation Mapping for Small-scale
Weakly Supervised Applications [69.22739434619531]
そこで我々はBroadCAMと呼ばれる結果に依存しないCAMアプローチを提案する。
VOC2012でBroadCAM、WSSSでBCSS-WSSS、WSOLでOpenImages30kを評価することで、BroadCAMは優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-09-07T06:45:43Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
本稿では,コード用大規模言語モデルに特有の説明可能性手法であるASTxplainerを紹介する。
その中核にあるASTxplainerは、トークン予測をASTノードに整合させる自動メソッドを提供する。
私たちは、最も人気のあるGitHubプロジェクトのキュレートデータセットを使用して、コード用の12の人気のあるLLMに対して、実証的な評価を行います。
論文 参考訳(メタデータ) (2023-08-07T18:50:57Z) - Learning Visual Explanations for DCNN-Based Image Classifiers Using an
Attention Mechanism [8.395400675921515]
L-CAM-FmとL-CAM-Imgと呼ばれる、深層畳み込みニューラルネットワーク(DCNN)画像分類のための2つの新しい学習ベースAI(XAI)手法を提案する。
どちらの手法も、元の(凍結した)DCNNに挿入される注意機構を使用し、最後の畳み込み層の特徴写像からクラス活性化マップ(CAM)を導出するように訓練されている。
ImageNet上での実験評価により,提案手法は推論段階で1回の前方通過を必要としながら,競合する結果が得られることが示された。
論文 参考訳(メタデータ) (2022-09-22T17:33:18Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
本稿では,金属人工物削減のための適応畳み込み辞書ネットワーク(ACDNet)を提案する。
我々のACDNetは、トレーニングデータを介して、アーティファクトフリーCT画像の事前を自動で学習し、入力されたCT画像ごとに表現カーネルを適応的に調整することができる。
本手法は,モデルに基づく手法の明確な解釈可能性を継承し,学習に基づく手法の強力な表現能力を維持する。
論文 参考訳(メタデータ) (2022-05-16T06:49:36Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
本稿では,特定のレイヤの最も情報性の高い特徴を表現した対応する画像を作成することにより,画像の集合を視覚的に解釈する手法を提案する。
本手法では, 生成ネットワークを必要とせず, 元のモデルに変更を加えることなく, デュアルオブジェクトのアクティベーションと距離損失を利用する。
論文 参考訳(メタデータ) (2021-01-29T07:46:39Z) - Use HiResCAM instead of Grad-CAM for faithful explanations of
convolutional neural networks [89.56292219019163]
説明法は意味のある概念を学習し、素早い相関を悪用しないモデルの開発を容易にする。
一般的なニューラルネットワーク説明法であるGrad-CAMの、未認識の制限について説明する。
本稿では,モデルが各予測に使用する場所のみをハイライトするクラス固有の説明手法であるHiResCAMを提案する。
論文 参考訳(メタデータ) (2020-11-17T19:26:14Z) - Axiom-based Grad-CAM: Towards Accurate Visualization and Explanation of
CNNs [29.731732363623713]
クラスアクティベーションマッピング(CAM)手法は,CNNの決定領域と画像領域の関連性を明らかにするために提案されている。
本稿では,CAM手法の可視化パラダイムに2つの公理(保存と感性)を導入する。
これらの公理をできるだけ満たすために、専用公理系Grad-CAM (XGrad-CAM) が提案されている。
論文 参考訳(メタデータ) (2020-08-05T18:42:33Z) - Eigen-CAM: Class Activation Map using Principal Components [1.2691047660244335]
この論文は、解釈可能で堅牢で透明なモデルに対する需要の増加に対応するために、従来の考え方に基づいている。
提案したEigen-CAMは、畳み込み層から学習した特徴/表現の基本的なコンポーネントを計算し、視覚化する。
論文 参考訳(メタデータ) (2020-08-01T17:14:13Z) - Explanation-Guided Training for Cross-Domain Few-Shot Classification [96.12873073444091]
クロスドメイン・ショット分類タスク(CD-FSC)は、データセットで表されるドメインをまたいで一般化する要件と、少数ショット分類を組み合わせたものである。
既存のFSCモデルに対する新しいトレーニング手法を提案する。
説明誘導学習はモデル一般化を効果的に改善することを示す。
論文 参考訳(メタデータ) (2020-07-17T07:28:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。