PCRDiffusion: Diffusion Probabilistic Models for Point Cloud
Registration
- URL: http://arxiv.org/abs/2312.06063v1
- Date: Mon, 11 Dec 2023 01:56:42 GMT
- Title: PCRDiffusion: Diffusion Probabilistic Models for Point Cloud
Registration
- Authors: Yue Wu, Yongzhe Yuan, Xiaolong Fan, Xiaoshui Huang, Maoguo Gong and
Qiguang Miao
- Abstract summary: We propose a new framework that formulates point cloud registration as a denoising diffusion process from noisy transformation to object transformation.
During training stage, object transformation diffuses from ground-truth transformation to random distribution, and the model learns to reverse this noising process.
In sampling stage, the model refines randomly generated transformation to the output result in a progressive way.
- Score: 28.633279452622475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new framework that formulates point cloud registration as a
denoising diffusion process from noisy transformation to object transformation.
During training stage, object transformation diffuses from ground-truth
transformation to random distribution, and the model learns to reverse this
noising process. In sampling stage, the model refines randomly generated
transformation to the output result in a progressive way. We derive the
variational bound in closed form for training and provide implementations of
the model. Our work provides the following crucial findings: (i) In contrast to
most existing methods, our framework, Diffusion Probabilistic Models for Point
Cloud Registration (PCRDiffusion) does not require repeatedly update source
point cloud to refine the predicted transformation. (ii) Point cloud
registration, one of the representative discriminative tasks, can be solved by
a generative way and the unified probabilistic formulation. Finally, we discuss
and provide an outlook on the application of diffusion model in different
scenarios for point cloud registration. Experimental results demonstrate that
our model achieves competitive performance in point cloud registration. In
correspondence-free and correspondence-based scenarios, PCRDifussion can both
achieve exceeding 50\% performance improvements.
Related papers
- Point Cloud Resampling with Learnable Heat Diffusion [58.050130177241186]
We propose a learnable heat diffusion framework for point cloud resampling.
Unlike previous diffusion models with a fixed prior, the adaptive conditional prior selectively preserves geometric features of the point cloud.
arXiv Detail & Related papers (2024-11-21T13:44:18Z) - Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion [61.03681839276652]
Diffusion Forcing is a new training paradigm where a diffusion model is trained to denoise a set of tokens with independent per-token noise levels.
We apply Diffusion Forcing to sequence generative modeling by training a causal next-token prediction model to generate one or several future tokens.
arXiv Detail & Related papers (2024-07-01T15:43:25Z) - Enhancing Diffusion-based Point Cloud Generation with Smoothness Constraint [5.140589325829964]
Diffusion models have been popular for point cloud generation tasks.
We propose incorporating the local smoothness constraint into the diffusion framework for point cloud generation.
Experiments demonstrate the proposed model can generate realistic shapes and smoother point clouds, outperforming multiple state-of-the-art methods.
arXiv Detail & Related papers (2024-04-03T01:55:15Z) - DiffusionPCR: Diffusion Models for Robust Multi-Step Point Cloud
Registration [73.37538551605712]
Point Cloud Registration (PCR) estimates the relative rigid transformation between two point clouds.
We propose formulating PCR as a denoising diffusion probabilistic process, mapping noisy transformations to the ground truth.
Our experiments showcase the effectiveness of our DiffusionPCR, yielding state-of-the-art registration recall rates (95.3%/81.6%) on 3D and 3DLoMatch.
arXiv Detail & Related papers (2023-12-05T18:59:41Z) - SE(3) Diffusion Model-based Point Cloud Registration for Robust 6D
Object Pose Estimation [66.16525145765604]
We introduce an SE(3) diffusion model-based point cloud registration framework for 6D object pose estimation in real-world scenarios.
Our approach formulates the 3D registration task as a denoising diffusion process, which progressively refines the pose of the source point cloud.
Experiments demonstrate that our diffusion registration framework presents outstanding pose estimation performance on the real-world TUD-L, LINEMOD, and Occluded-LINEMOD datasets.
arXiv Detail & Related papers (2023-10-26T12:47:26Z) - Towards Controllable Diffusion Models via Reward-Guided Exploration [15.857464051475294]
We propose a novel framework that guides the training-phase of diffusion models via reinforcement learning (RL)
RL enables calculating policy gradients via samples from a pay-off distribution proportional to exponential scaled rewards, rather than from policies themselves.
Experiments on 3D shape and molecule generation tasks show significant improvements over existing conditional diffusion models.
arXiv Detail & Related papers (2023-04-14T13:51:26Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
We propose a novel conditional diffusion model by introducing conditions into the forward process.
We use extra latent space to allocate an exclusive diffusion trajectory for each condition based on some shifting rules.
We formulate our method, which we call textbfShiftDDPMs, and provide a unified point of view on existing related methods.
arXiv Detail & Related papers (2023-02-05T12:48:21Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Planning with Learned Dynamic Model for Unsupervised Point Cloud
Registration [25.096635750142227]
We develop a latent dynamic model of point clouds, consisting of a transformation network and evaluation network.
We employ the cross-entropy method (CEM) to iteratively update the planning policy by maximizing the rewards in the point cloud registration process.
Experimental results on ModelNet40 and 7Scene benchmark datasets demonstrate that our method can yield good registration performance in an unsupervised manner.
arXiv Detail & Related papers (2021-08-05T13:47:11Z) - Diffusion Probabilistic Models for 3D Point Cloud Generation [12.257593992442732]
We present a probabilistic model for point cloud generation that is critical for various 3D vision tasks.
Inspired by the diffusion process in non-equilibrium thermodynamics, we view points in point clouds as particles in a thermodynamic system in contact with a heat bath.
We derive the variational bound in closed form for training and provide implementations of the model.
arXiv Detail & Related papers (2021-03-02T03:56:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.