Generative Modeling with Bayesian Sample Inference
- URL: http://arxiv.org/abs/2502.07580v1
- Date: Tue, 11 Feb 2025 14:27:10 GMT
- Title: Generative Modeling with Bayesian Sample Inference
- Authors: Marten Lienen, Marcel Kollovieh, Stephan Günnemann,
- Abstract summary: We derive a novel generative model from the simple act of Gaussian posterior inference.
Treating the generated sample as an unknown variable to infer lets us formulate the sampling process in the language of Bayesian probability.
Our model uses a sequence of prediction and posterior update steps to narrow down the unknown sample from a broad initial belief.
- Score: 50.07758840675341
- License:
- Abstract: We derive a novel generative model from the simple act of Gaussian posterior inference. Treating the generated sample as an unknown variable to infer lets us formulate the sampling process in the language of Bayesian probability. Our model uses a sequence of prediction and posterior update steps to narrow down the unknown sample from a broad initial belief. In addition to a rigorous theoretical analysis, we establish a connection between our model and diffusion models and show that it includes Bayesian Flow Networks (BFNs) as a special case. In our experiments, we demonstrate improved performance over both BFNs and Variational Diffusion Models, achieving competitive likelihood scores on CIFAR10 and ImageNet.
Related papers
- Accelerated Diffusion Models via Speculative Sampling [89.43940130493233]
Speculative sampling is a popular technique for accelerating inference in Large Language Models.
We extend speculative sampling to diffusion models, which generate samples via continuous, vector-valued Markov chains.
We propose various drafting strategies, including a simple and effective approach that does not require training a draft model.
arXiv Detail & Related papers (2025-01-09T16:50:16Z) - Generative Modeling with Diffusion [0.0]
We introduce the diffusion model as a method to generate new samples.
We will define the noising and denoising processes, then introduce algorithms to train and generate with a diffusion model.
arXiv Detail & Related papers (2024-12-14T20:04:46Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
Despite the state-of-the-art performance, diffusion models are known for their slow sample generation due to the extensive number of steps involved.
This paper contributes towards the first statistical theory for consistency models, formulating their training as a distribution discrepancy minimization problem.
arXiv Detail & Related papers (2024-06-23T20:34:18Z) - Diffusion models for probabilistic programming [56.47577824219207]
Diffusion Model Variational Inference (DMVI) is a novel method for automated approximate inference in probabilistic programming languages (PPLs)
DMVI is easy to implement, allows hassle-free inference in PPLs without the drawbacks of, e.g., variational inference using normalizing flows, and does not make any constraints on the underlying neural network model.
arXiv Detail & Related papers (2023-11-01T12:17:05Z) - Bi-Noising Diffusion: Towards Conditional Diffusion Models with
Generative Restoration Priors [64.24948495708337]
We introduce a new method that brings predicted samples to the training data manifold using a pretrained unconditional diffusion model.
We perform comprehensive experiments to demonstrate the effectiveness of our approach on super-resolution, colorization, turbulence removal, and image-deraining tasks.
arXiv Detail & Related papers (2022-12-14T17:26:35Z) - Bayesian Neural Network Inference via Implicit Models and the Posterior
Predictive Distribution [0.8122270502556371]
We propose a novel approach to perform approximate Bayesian inference in complex models such as Bayesian neural networks.
The approach is more scalable to large data than Markov Chain Monte Carlo.
We see this being useful in applications such as surrogate and physics-based models.
arXiv Detail & Related papers (2022-09-06T02:43:19Z) - Generating Diverse Translation from Model Distribution with Dropout [13.223158914896727]
We propose to generate diverse translations by deriving a large number of possible models with Bayesian modelling and sampling models from them for inference.
We conducted experiments on Chinese-English and English-German translation tasks and the results show that our method makes a better trade-off between diversity and accuracy.
arXiv Detail & Related papers (2020-10-16T05:50:00Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
We show that a posterior approximation distinct from the variational distribution should be used for making decisions.
Motivated by these theoretical results, we propose learning several approximate proposals for the best model.
In addition to toy examples, we present a full-fledged case study of single-cell RNA sequencing.
arXiv Detail & Related papers (2020-02-17T19:23:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.