Survey on Memory-Augmented Neural Networks: Cognitive Insights to AI
Applications
- URL: http://arxiv.org/abs/2312.06141v2
- Date: Wed, 13 Dec 2023 02:13:26 GMT
- Title: Survey on Memory-Augmented Neural Networks: Cognitive Insights to AI
Applications
- Authors: Savya Khosla, Zhen Zhu, Yifei He
- Abstract summary: Memory-Augmented Neural Networks (MANNs) blend human-like memory processes into AI.
The study investigates advanced architectures such as Hopfield Networks, Neural Turing Machines, Correlation Matrix Memories, Memformer, and Neural Attention Memory.
It dives into real-world uses of MANNs across Natural Language Processing, Computer Vision, Multimodal Learning, and Retrieval Models.
- Score: 4.9008611361629955
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores Memory-Augmented Neural Networks (MANNs), delving into
how they blend human-like memory processes into AI. It covers different memory
types, like sensory, short-term, and long-term memory, linking psychological
theories with AI applications. The study investigates advanced architectures
such as Hopfield Networks, Neural Turing Machines, Correlation Matrix Memories,
Memformer, and Neural Attention Memory, explaining how they work and where they
excel. It dives into real-world uses of MANNs across Natural Language
Processing, Computer Vision, Multimodal Learning, and Retrieval Models, showing
how memory boosters enhance accuracy, efficiency, and reliability in AI tasks.
Overall, this survey provides a comprehensive view of MANNs, offering insights
for future research in memory-based AI systems.
Related papers
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Hyperbolic Brain Representations [44.99833362998488]
We look at the structure and functions of the human brain, highlighting the alignment between the brain's hierarchical nature and hyperbolic geometry.
Empirical evidence indicates that hyperbolic neural networks outperform Euclidean models for tasks including natural language processing, computer vision and complex network analysis.
Despite its nascent adoption, hyperbolic geometry holds promise for improving machine learning models.
arXiv Detail & Related papers (2024-09-04T19:58:25Z) - Post-hoc and manifold explanations analysis of facial expression data based on deep learning [4.586134147113211]
This paper investigates how neural networks process and store facial expression data and associate these data with a range of psychological attributes produced by humans.
Researchers utilized deep learning model VGG16, demonstrating that neural networks can learn and reproduce key features of facial data.
The experimental results reveal the potential of deep learning models in understanding human emotions and cognitive processes.
arXiv Detail & Related papers (2024-04-29T01:19:17Z) - Memory-Augmented Theory of Mind Network [59.9781556714202]
Social reasoning requires the capacity of theory of mind (ToM) to contextualise and attribute mental states to others.
Recent machine learning approaches to ToM have demonstrated that we can train the observer to read the past and present behaviours of other agents.
We tackle the challenges by equipping the observer with novel neural memory mechanisms to encode, and hierarchical attention to selectively retrieve information about others.
This results in ToMMY, a theory of mind model that learns to reason while making little assumptions about the underlying mental processes.
arXiv Detail & Related papers (2023-01-17T14:48:58Z) - A bio-inspired implementation of a sparse-learning spike-based
hippocampus memory model [0.0]
We propose a novel bio-inspired memory model based on the hippocampus.
It can learn memories, recall them from a cue and even forget memories when trying to learn others with the same cue.
This work presents the first hardware implementation of a fully functional bio-inspired spike-based hippocampus memory model.
arXiv Detail & Related papers (2022-06-10T07:48:29Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
Modern AI systems, based on von Neumann architecture and classical neural networks, have a number of fundamental limitations in comparison with the brain.
This article discusses such limitations and the ways they can be mitigated.
It presents an overview of currently available neuromorphic AI projects in which these limitations are overcome.
arXiv Detail & Related papers (2022-05-25T20:16:05Z) - CogNGen: Constructing the Kernel of a Hyperdimensional Predictive
Processing Cognitive Architecture [79.07468367923619]
We present a new cognitive architecture that combines two neurobiologically plausible, computational models.
We aim to develop a cognitive architecture that has the power of modern machine learning techniques.
arXiv Detail & Related papers (2022-03-31T04:44:28Z) - Memory and attention in deep learning [19.70919701635945]
Memory construction for machine is inevitable.
Recent progresses on modeling memory in deep learning have revolved around external memory constructions.
The aim of this thesis is to advance the understanding on memory and attention in deep learning.
arXiv Detail & Related papers (2021-07-03T09:21:13Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
The ability to recognize human partners is an important social skill to build personalized and long-term human-robot interactions.
Deep learning networks have achieved state-of-the-art results and demonstrated to be suitable tools to address such a task.
One solution is to make robots learn from their first-hand sensory data with self-supervision.
arXiv Detail & Related papers (2021-03-16T13:50:24Z) - A Neural Dynamic Model based on Activation Diffusion and a
Micro-Explanation for Cognitive Operations [4.416484585765028]
The neural mechanism of memory has a very close relation with the problem of representation in artificial intelligence.
A computational model was proposed to simulate the network of neurons in brain and how they process information.
arXiv Detail & Related papers (2020-11-27T01:34:08Z) - Reservoir Memory Machines as Neural Computers [70.5993855765376]
Differentiable neural computers extend artificial neural networks with an explicit memory without interference.
We achieve some of the computational capabilities of differentiable neural computers with a model that can be trained very efficiently.
arXiv Detail & Related papers (2020-09-14T12:01:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.