論文の概要: Exploiting Label Skews in Federated Learning with Model Concatenation
- arxiv url: http://arxiv.org/abs/2312.06290v2
- Date: Sat, 16 Dec 2023 13:37:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-19 19:24:52.813355
- Title: Exploiting Label Skews in Federated Learning with Model Concatenation
- Title(参考訳): モデル結合によるフェデレーション学習におけるラベルスキューの爆発
- Authors: Yiqun Diao, Qinbin Li, Bingsheng He
- Abstract要約: Federated Learning(FL)は、生データを交換することなく、さまざまなデータオーナでディープラーニングを実行するための、有望なソリューションとして登場した。
非IID型では、ラベルスキューは困難であり、画像分類やその他のタスクで一般的である。
我々は,これらの局所モデルをグローバルモデルの基礎として分解する,シンプルで効果的なアプローチであるFedConcatを提案する。
- 参考スコア(独自算出の注目度): 39.38427550571378
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) has emerged as a promising solution to perform deep
learning on different data owners without exchanging raw data. However, non-IID
data has been a key challenge in FL, which could significantly degrade the
accuracy of the final model. Among different non-IID types, label skews have
been challenging and common in image classification and other tasks. Instead of
averaging the local models in most previous studies, we propose FedConcat, a
simple and effective approach that concatenates these local models as the base
of the global model to effectively aggregate the local knowledge. To reduce the
size of the global model, we adopt the clustering technique to group the
clients by their label distributions and collaboratively train a model inside
each cluster. We theoretically analyze the advantage of concatenation over
averaging by analyzing the information bottleneck of deep neural networks.
Experimental results demonstrate that FedConcat achieves significantly higher
accuracy than previous state-of-the-art FL methods in various heterogeneous
label skew distribution settings and meanwhile has lower communication costs.
Our code is publicly available at https://github.com/sjtudyq/FedConcat.
- Abstract(参考訳): Federated Learning (FL)は、生データを交換することなく、異なるデータ所有者でディープラーニングを実行するための有望なソリューションとして登場した。
しかし、非IIDデータはFLの重要な課題であり、最終モデルの精度を著しく低下させる可能性がある。
非IID型では、ラベルスキューは困難であり、画像分類やその他のタスクで一般的である。
従来の研究では,局所モデルを平均化するのではなく,これらの局所モデルをグローバルモデルの基盤として結合し,局所的な知識を効果的に集約する,シンプルかつ効果的なアプローチであるFedConcatを提案する。
グローバルモデルのサイズを小さくするため,我々は,顧客をラベル分布でグループ化し,各クラスタ内で協調的にモデルをトレーニングするクラスタリング手法を採用した。
本研究では,深層ニューラルネットワークの情報ボトルネックを分析し,平均化よりも結合の利点を理論的に解析する。
実験により,FedConcatは様々な異種ラベルスキュー分布設定において従来のFL法よりも精度が高く,通信コストも低いことがわかった。
私たちのコードはhttps://github.com/sjtudyq/FedConcat.comで公開されています。
関連論文リスト
- FedClust: Tackling Data Heterogeneity in Federated Learning through Weight-Driven Client Clustering [26.478852701376294]
フェデレートラーニング(Federated Learning, FL)は、分散機械学習のパラダイムである。
FLの主な課題の1つは、クライアントデバイスにまたがる不均一なデータ分散の存在である。
我々は,局所モデル重みとクライアントのデータ分布の相関を利用したCFLの新しい手法であるFedClustを提案する。
論文 参考訳(メタデータ) (2024-07-09T02:47:16Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
コンセンサス指向生成による連合学習(FedCOG)を提案する。
FedCOGは、補完的なデータ生成と知識蒸留に基づくモデルトレーニングという、クライアント側の2つの重要なコンポーネントで構成されています。
古典的および実世界のFLデータセットの実験は、FedCOGが一貫して最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2023-12-10T18:49:59Z) - Federated Skewed Label Learning with Logits Fusion [23.062650578266837]
フェデレートラーニング(FL)は、ローカルデータを送信することなく、複数のクライアント間で共有モデルを協調的にトレーニングすることを目的としている。
本稿では,ロジットの校正により局所モデル間の最適化バイアスを補正するFedBalanceを提案する。
提案手法は最先端手法に比べて平均精度が13%高い。
論文 参考訳(メタデータ) (2023-11-14T14:37:33Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
フェデレートラーニング(FL)は、複数のクライアントが分散した方法で協調的に学習し、プライバシ保護を可能にする。
その結果,局所モデルとグローバルモデルとのロジット差は,モデルが継続的に更新されるにつれて増大することがわかった。
我々はFedCSDと呼ばれる新しいアルゴリズムを提案する。FedCSDは、ローカルモデルとグローバルモデルを調整するためのフェデレーションフレームワークにおけるクラスプロトタイプの類似度蒸留である。
論文 参考訳(メタデータ) (2023-08-20T04:41:01Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
フェデレートラーニング(Federated Learning, FL)は、プライバシ制約下での分散学習パラダイムである。
サーバ内のグローバルモデル(FedFTG)を微調整するデータフリー知識蒸留法を提案する。
私たちのFedFTGは最先端(SOTA)のFLアルゴリズムよりも優れており、FedAvg、FedProx、FedDyn、SCAFFOLDの強化のための強力なプラグインとして機能します。
論文 参考訳(メタデータ) (2022-03-17T11:18:17Z) - FedCAT: Towards Accurate Federated Learning via Device Concatenation [4.416919766772866]
Federated Learning(FL)は、すべてのデバイスが、ローカルデータのプライバシを公開することなく、グローバルモデルを協調的にトレーニングすることを可能にする。
非IIDシナリオでは、データの不均一性に起因する重みのばらつきにより、FLモデルの分類精度が大幅に低下する。
本稿では,Fed-Cat という新しいFLアプローチを導入し,提案したデバイス選択戦略とデバイス結合に基づく局所学習手法に基づいて,高精度なモデル精度を実現する。
論文 参考訳(メタデータ) (2022-02-23T10:08:43Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Multi-Center Federated Learning [62.32725938999433]
フェデレートラーニング(FL)は、分散ラーニングにおけるデータのプライバシを保護する。
単にデータにアクセスせずに、ユーザーからローカルな勾配を収集するだけだ。
本稿では,新しいマルチセンターアグリゲーション機構を提案する。
論文 参考訳(メタデータ) (2021-08-19T12:20:31Z) - FedBE: Making Bayesian Model Ensemble Applicable to Federated Learning [23.726336635748783]
フェデレートラーニング(Federated Learning)は、ユーザのローカルにトレーニングされたモデルにアクセスして、自身のデータではなく、強力なグローバルモデルを協調的にトレーニングすることを目的としている。
したがって、ローカルモデルをグローバルモデルに集約することが重要なステップであり、これはユーザーが非i.d.データを持つ場合に困難であることが示されている。
我々は,ハイクオリティなグローバルモデルをサンプリングすることによってベイズ推論の観点から,FedBEという新しい集約アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-04T01:18:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。