LiCamPose: Combining Multi-View LiDAR and RGB Cameras for Robust Single-frame 3D Human Pose Estimation
- URL: http://arxiv.org/abs/2312.06409v3
- Date: Tue, 16 Jul 2024 09:30:58 GMT
- Title: LiCamPose: Combining Multi-View LiDAR and RGB Cameras for Robust Single-frame 3D Human Pose Estimation
- Authors: Zhiyu Pan, Zhicheng Zhong, Wenxuan Guo, Yifan Chen, Jianjiang Feng, Jie Zhou,
- Abstract summary: LiCamPose is a pipeline that integrates multi-view RGB and sparse point cloud information to estimate robust 3D human poses via single frame.
LiCamPose is evaluated on four datasets, including two public datasets, one synthetic dataset, and one challenging self-collected dataset.
- Score: 31.651300414497822
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Several methods have been proposed to estimate 3D human pose from multi-view images, achieving satisfactory performance on public datasets collected under relatively simple conditions. However, there are limited approaches studying extracting 3D human skeletons from multimodal inputs, such as RGB and point cloud data. To address this gap, we introduce LiCamPose, a pipeline that integrates multi-view RGB and sparse point cloud information to estimate robust 3D human poses via single frame. We demonstrate the effectiveness of the volumetric architecture in combining these modalities. Furthermore, to circumvent the need for manually labeled 3D human pose annotations, we develop a synthetic dataset generator for pretraining and design an unsupervised domain adaptation strategy to train a 3D human pose estimator without manual annotations. To validate the generalization capability of our method, LiCamPose is evaluated on four datasets, including two public datasets, one synthetic dataset, and one challenging self-collected dataset named BasketBall, covering diverse scenarios. The results demonstrate that LiCamPose exhibits great generalization performance and significant application potential. The code, generator, and datasets will be made available upon acceptance of this paper.
Related papers
- Neural Localizer Fields for Continuous 3D Human Pose and Shape Estimation [32.30055363306321]
We propose a paradigm for seamlessly unifying different human pose and shape-related tasks and datasets.
Our formulation is centered on the ability - both at training and test time - to query any arbitrary point of the human volume.
We can naturally exploit differently annotated data sources including mesh, 2D/3D skeleton and dense pose, without having to convert between them.
arXiv Detail & Related papers (2024-07-10T10:44:18Z) - UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - 3D Human Reconstruction in the Wild with Synthetic Data Using Generative Models [52.96248836582542]
We propose an effective approach based on recent diffusion models, termed HumanWild, which can effortlessly generate human images and corresponding 3D mesh annotations.
By exclusively employing generative models, we generate large-scale in-the-wild human images and high-quality annotations, eliminating the need for real-world data collection.
arXiv Detail & Related papers (2024-03-17T06:31:16Z) - Towards Precise 3D Human Pose Estimation with Multi-Perspective Spatial-Temporal Relational Transformers [28.38686299271394]
We propose a framework for 3D sequence-to-sequence (seq2seq) human pose detection.
Firstly, the spatial module represents the human pose feature by intra-image content, while the frame-image relation module extracts temporal relationships.
Our method is evaluated on Human3.6M, a popular 3D human pose detection dataset.
arXiv Detail & Related papers (2024-01-30T03:00:25Z) - Human-M3: A Multi-view Multi-modal Dataset for 3D Human Pose Estimation
in Outdoor Scenes [35.90042512490975]
Human-M3 is an outdoor multi-modal multi-view multi-person human pose database.
It includes not only multi-view RGB videos of outdoor scenes but also corresponding pointclouds.
In order to obtain accurate human poses, we propose an algorithm based on multi-modal data input.
arXiv Detail & Related papers (2023-08-01T15:55:41Z) - Weakly Supervised 3D Multi-person Pose Estimation for Large-scale Scenes
based on Monocular Camera and Single LiDAR [41.39277657279448]
We propose a monocular camera and single LiDAR-based method for 3D multi-person pose estimation in large-scale scenes.
Specifically, we design an effective fusion strategy to take advantage of multi-modal input data, including images and point cloud.
Our method exploits the inherent geometry constraints of point cloud for self-supervision and utilizes 2D keypoints on images for weak supervision.
arXiv Detail & Related papers (2022-11-30T12:50:40Z) - UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body
Decoupling 3D Model [58.70130563417079]
We introduce a new 3D human-body model with a series of decoupled parameters that could freely control the generation of the body.
Compared to the existing manually annotated DensePose-COCO dataset, the synthetic UltraPose has ultra dense image-to-surface correspondences without annotation cost and error.
arXiv Detail & Related papers (2021-10-28T16:24:55Z) - VoxelTrack: Multi-Person 3D Human Pose Estimation and Tracking in the
Wild [98.69191256693703]
We present VoxelTrack for multi-person 3D pose estimation and tracking from a few cameras which are separated by wide baselines.
It employs a multi-branch network to jointly estimate 3D poses and re-identification (Re-ID) features for all people in the environment.
It outperforms the state-of-the-art methods by a large margin on three public datasets including Shelf, Campus and CMU Panoptic.
arXiv Detail & Related papers (2021-08-05T08:35:44Z) - Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image
Synthesis [72.34794624243281]
We propose a self-supervised learning framework to disentangle variations from unlabeled video frames.
Our differentiable formalization, bridging the representation gap between the 3D pose and spatial part maps, allows us to operate on videos with diverse camera movements.
arXiv Detail & Related papers (2020-04-09T07:55:01Z) - Weakly-Supervised 3D Human Pose Learning via Multi-view Images in the
Wild [101.70320427145388]
We propose a weakly-supervised approach that does not require 3D annotations and learns to estimate 3D poses from unlabeled multi-view data.
We evaluate our proposed approach on two large scale datasets.
arXiv Detail & Related papers (2020-03-17T08:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.