Towards Precise 3D Human Pose Estimation with Multi-Perspective Spatial-Temporal Relational Transformers
- URL: http://arxiv.org/abs/2401.16700v2
- Date: Mon, 25 Mar 2024 13:33:51 GMT
- Title: Towards Precise 3D Human Pose Estimation with Multi-Perspective Spatial-Temporal Relational Transformers
- Authors: Jianbin Jiao, Xina Cheng, Weijie Chen, Xiaoting Yin, Hao Shi, Kailun Yang,
- Abstract summary: We propose a framework for 3D sequence-to-sequence (seq2seq) human pose detection.
Firstly, the spatial module represents the human pose feature by intra-image content, while the frame-image relation module extracts temporal relationships.
Our method is evaluated on Human3.6M, a popular 3D human pose detection dataset.
- Score: 28.38686299271394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D human pose estimation captures the human joint points in three-dimensional space while keeping the depth information and physical structure. That is essential for applications that require precise pose information, such as human-computer interaction, scene understanding, and rehabilitation training. Due to the challenges in data collection, mainstream datasets of 3D human pose estimation are primarily composed of multi-view video data collected in laboratory environments, which contains rich spatial-temporal correlation information besides the image frame content. Given the remarkable self-attention mechanism of transformers, capable of capturing the spatial-temporal correlation from multi-view video datasets, we propose a multi-stage framework for 3D sequence-to-sequence (seq2seq) human pose detection. Firstly, the spatial module represents the human pose feature by intra-image content, while the frame-image relation module extracts temporal relationships and 3D spatial positional relationship features between the multi-perspective images. Secondly, the self-attention mechanism is adopted to eliminate the interference from non-human body parts and reduce computing resources. Our method is evaluated on Human3.6M, a popular 3D human pose detection dataset. Experimental results demonstrate that our approach achieves state-of-the-art performance on this dataset. The source code will be available at https://github.com/WUJINHUAN/3D-human-pose.
Related papers
- StackFLOW: Monocular Human-Object Reconstruction by Stacked Normalizing Flow with Offset [56.71580976007712]
We propose to use the Human-Object Offset between anchors which are densely sampled from the surface of human mesh and object mesh to represent human-object spatial relation.
Based on this representation, we propose Stacked Normalizing Flow (StackFLOW) to infer the posterior distribution of human-object spatial relations from the image.
During the optimization stage, we finetune the human body pose and object 6D pose by maximizing the likelihood of samples.
arXiv Detail & Related papers (2024-07-30T04:57:21Z) - Self-learning Canonical Space for Multi-view 3D Human Pose Estimation [57.969696744428475]
Multi-view 3D human pose estimation is naturally superior to single view one.
The accurate annotation of these information is hard to obtain.
We propose a fully self-supervised framework, named cascaded multi-view aggregating network (CMANet)
CMANet is superior to state-of-the-art methods in extensive quantitative and qualitative analysis.
arXiv Detail & Related papers (2024-03-19T04:54:59Z) - Co-Evolution of Pose and Mesh for 3D Human Body Estimation from Video [23.93644678238666]
We propose a Pose and Mesh Co-Evolution network (PMCE) to recover 3D human motion from a video.
The proposed PMCE outperforms previous state-of-the-art methods in terms of both per-frame accuracy and temporal consistency.
arXiv Detail & Related papers (2023-08-20T16:03:21Z) - Learning Temporal 3D Human Pose Estimation with Pseudo-Labels [3.0954251281114513]
We present a simple, yet effective, approach for self-supervised 3D human pose estimation.
We rely on triangulating 2D body pose estimates of a multiple-view camera system.
Our method achieves state-of-the-art performance in the Human3.6M and MPI-INF-3DHP benchmarks.
arXiv Detail & Related papers (2021-10-14T17:40:45Z) - Graph-Based 3D Multi-Person Pose Estimation Using Multi-View Images [79.70127290464514]
We decompose the task into two stages, i.e. person localization and pose estimation.
And we propose three task-specific graph neural networks for effective message passing.
Our approach achieves state-of-the-art performance on CMU Panoptic and Shelf datasets.
arXiv Detail & Related papers (2021-09-13T11:44:07Z) - 3D Human Pose Estimation with Spatial and Temporal Transformers [59.433208652418976]
We present PoseFormer, a purely transformer-based approach for 3D human pose estimation in videos.
Inspired by recent developments in vision transformers, we design a spatial-temporal transformer structure.
We quantitatively and qualitatively evaluate our method on two popular and standard benchmark datasets.
arXiv Detail & Related papers (2021-03-18T18:14:37Z) - Graph and Temporal Convolutional Networks for 3D Multi-person Pose
Estimation in Monocular Videos [33.974241749058585]
We propose a novel framework integrating graph convolutional networks (GCNs) and temporal convolutional networks (TCNs) to robustly estimate camera-centric multi-person 3D poses.
In particular, we introduce a human-joint GCN, which employs the 2D pose estimator's confidence scores to improve the pose estimation results.
The two GCNs work together to estimate the spatial frame-wise 3D poses and can make use of both visible joint and bone information in the target frame to estimate the occluded or missing human-part information.
arXiv Detail & Related papers (2020-12-22T03:01:19Z) - HMOR: Hierarchical Multi-Person Ordinal Relations for Monocular
Multi-Person 3D Pose Estimation [54.23770284299979]
This paper introduces a novel form of supervision - Hierarchical Multi-person Ordinal Relations (HMOR)
HMOR encodes interaction information as the ordinal relations of depths and angles hierarchically.
An integrated top-down model is designed to leverage these ordinal relations in the learning process.
The proposed method significantly outperforms state-of-the-art methods on publicly available multi-person 3D pose datasets.
arXiv Detail & Related papers (2020-08-01T07:53:27Z) - Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image
Synthesis [72.34794624243281]
We propose a self-supervised learning framework to disentangle variations from unlabeled video frames.
Our differentiable formalization, bridging the representation gap between the 3D pose and spatial part maps, allows us to operate on videos with diverse camera movements.
arXiv Detail & Related papers (2020-04-09T07:55:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.