Semantic Image Synthesis for Abdominal CT
- URL: http://arxiv.org/abs/2312.06453v1
- Date: Mon, 11 Dec 2023 15:39:41 GMT
- Title: Semantic Image Synthesis for Abdominal CT
- Authors: Yan Zhuang, Benjamin Hou, Tejas Sudharshan Mathai, Pritam Mukherjee,
Boah Kim, Ronald M. Summers
- Abstract summary: In this work, we explore semantic image synthesis for abdominal CT using conditional diffusion models.
Experimental results demonstrated that diffusion models were able to synthesize abdominal CT images with better quality.
- Score: 14.808000433125523
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As a new emerging and promising type of generative models, diffusion models
have proven to outperform Generative Adversarial Networks (GANs) in multiple
tasks, including image synthesis. In this work, we explore semantic image
synthesis for abdominal CT using conditional diffusion models, which can be
used for downstream applications such as data augmentation. We systematically
evaluated the performance of three diffusion models, as well as to other
state-of-the-art GAN-based approaches, and studied the different conditioning
scenarios for the semantic mask. Experimental results demonstrated that
diffusion models were able to synthesize abdominal CT images with better
quality. Additionally, encoding the mask and the input separately is more
effective than na\"ive concatenating.
Related papers
- Similarity-aware Syncretic Latent Diffusion Model for Medical Image Translation with Representation Learning [15.234393268111845]
Non-contrast CT (NCCT) imaging may reduce image contrast and anatomical visibility, potentially increasing diagnostic uncertainty.
We propose a novel Syncretic generative model based on the latent diffusion model for medical image translation (S$2$LDM)
S$2$LDM enhances the similarity in distinct modal images via syncretic encoding and diffusing, promoting amalgamated information in the latent space and generating medical images with more details in contrast-enhanced regions.
arXiv Detail & Related papers (2024-06-20T03:54:41Z) - Training Class-Imbalanced Diffusion Model Via Overlap Optimization [55.96820607533968]
Diffusion models trained on real-world datasets often yield inferior fidelity for tail classes.
Deep generative models, including diffusion models, are biased towards classes with abundant training images.
We propose a method based on contrastive learning to minimize the overlap between distributions of synthetic images for different classes.
arXiv Detail & Related papers (2024-02-16T16:47:21Z) - Your Diffusion Model is Secretly a Zero-Shot Classifier [90.40799216880342]
We show that density estimates from large-scale text-to-image diffusion models can be leveraged to perform zero-shot classification.
Our generative approach to classification attains strong results on a variety of benchmarks.
Our results are a step toward using generative over discriminative models for downstream tasks.
arXiv Detail & Related papers (2023-03-28T17:59:56Z) - SinDiffusion: Learning a Diffusion Model from a Single Natural Image [159.4285444680301]
We present SinDiffusion, leveraging denoising diffusion models to capture internal distribution of patches from a single natural image.
It is based on two core designs. First, SinDiffusion is trained with a single model at a single scale instead of multiple models with progressive growing of scales.
Second, we identify that a patch-level receptive field of the diffusion network is crucial and effective for capturing the image's patch statistics.
arXiv Detail & Related papers (2022-11-22T18:00:03Z) - Unifying Diffusion Models' Latent Space, with Applications to
CycleDiffusion and Guidance [95.12230117950232]
We show that a common latent space emerges from two diffusion models trained independently on related domains.
Applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors.
arXiv Detail & Related papers (2022-10-11T15:53:52Z) - Conversion Between CT and MRI Images Using Diffusion and Score-Matching
Models [7.745729132928934]
We propose to use an emerging deep learning framework called diffusion and score-matching models.
Our results show that the diffusion and score-matching models generate better synthetic CT images than the CNN and GAN models.
Our study suggests that diffusion and score-matching models are powerful to generate high quality images conditioned on an image obtained using a complementary imaging modality.
arXiv Detail & Related papers (2022-09-24T23:50:54Z) - Unsupervised Medical Image Translation with Adversarial Diffusion Models [0.2770822269241974]
Imputation of missing images via source-to-target modality translation can improve diversity in medical imaging protocols.
Here, we propose a novel method based on adversarial diffusion modeling, SynDiff, for improved performance in medical image translation.
arXiv Detail & Related papers (2022-07-17T15:53:24Z) - Semantic Image Synthesis via Diffusion Models [159.4285444680301]
Denoising Diffusion Probabilistic Models (DDPMs) have achieved remarkable success in various image generation tasks.
Recent work on semantic image synthesis mainly follows the emphde facto Generative Adversarial Nets (GANs)
arXiv Detail & Related papers (2022-06-30T18:31:51Z) - DiVAE: Photorealistic Images Synthesis with Denoising Diffusion Decoder [73.1010640692609]
We propose a VQ-VAE architecture model with a diffusion decoder (DiVAE) to work as the reconstructing component in image synthesis.
Our model achieves state-of-the-art results and generates more photorealistic images specifically.
arXiv Detail & Related papers (2022-06-01T10:39:12Z) - DiffusionCLIP: Text-guided Image Manipulation Using Diffusion Models [33.79188588182528]
We present a novel DiffusionCLIP which performs text-driven image manipulation with diffusion models using Contrastive Language-Image Pre-training (CLIP) loss.
Our method has a performance comparable to that of the modern GAN-based image processing methods for in and out-of-domain image processing tasks.
Our method can be easily used for various novel applications, enabling image translation from an unseen domain to another unseen domain or stroke-conditioned image generation in an unseen domain.
arXiv Detail & Related papers (2021-10-06T12:59:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.