Unsupervised Medical Image Translation with Adversarial Diffusion Models
- URL: http://arxiv.org/abs/2207.08208v3
- Date: Fri, 31 Mar 2023 12:12:24 GMT
- Title: Unsupervised Medical Image Translation with Adversarial Diffusion Models
- Authors: Muzaffer \"Ozbey, Onat Dalmaz, Salman UH Dar, Hasan A Bedel, \c{S}aban
\"Ozturk, Alper G\"ung\"or, Tolga \c{C}ukur
- Abstract summary: Imputation of missing images via source-to-target modality translation can improve diversity in medical imaging protocols.
Here, we propose a novel method based on adversarial diffusion modeling, SynDiff, for improved performance in medical image translation.
- Score: 0.2770822269241974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Imputation of missing images via source-to-target modality translation can
improve diversity in medical imaging protocols. A pervasive approach for
synthesizing target images involves one-shot mapping through generative
adversarial networks (GAN). Yet, GAN models that implicitly characterize the
image distribution can suffer from limited sample fidelity. Here, we propose a
novel method based on adversarial diffusion modeling, SynDiff, for improved
performance in medical image translation. To capture a direct correlate of the
image distribution, SynDiff leverages a conditional diffusion process that
progressively maps noise and source images onto the target image. For fast and
accurate image sampling during inference, large diffusion steps are taken with
adversarial projections in the reverse diffusion direction. To enable training
on unpaired datasets, a cycle-consistent architecture is devised with coupled
diffusive and non-diffusive modules that bilaterally translate between two
modalities. Extensive assessments are reported on the utility of SynDiff
against competing GAN and diffusion models in multi-contrast MRI and MRI-CT
translation. Our demonstrations indicate that SynDiff offers quantitatively and
qualitatively superior performance against competing baselines.
Related papers
- Cross-conditioned Diffusion Model for Medical Image to Image Translation [22.020931436223204]
We introduce a Cross-conditioned Diffusion Model (CDM) for medical image-to-image translation.
First, we propose a Modality-specific Representation Model (MRM) to model the distribution of target modalities.
Then, we design a Modality-decoupled Diffusion Network (MDN) to efficiently and effectively learn the distribution from MRM.
arXiv Detail & Related papers (2024-09-13T02:48:56Z) - Similarity-aware Syncretic Latent Diffusion Model for Medical Image Translation with Representation Learning [15.234393268111845]
Non-contrast CT (NCCT) imaging may reduce image contrast and anatomical visibility, potentially increasing diagnostic uncertainty.
We propose a novel Syncretic generative model based on the latent diffusion model for medical image translation (S$2$LDM)
S$2$LDM enhances the similarity in distinct modal images via syncretic encoding and diffusing, promoting amalgamated information in the latent space and generating medical images with more details in contrast-enhanced regions.
arXiv Detail & Related papers (2024-06-20T03:54:41Z) - Self-Consistent Recursive Diffusion Bridge for Medical Image Translation [6.850683267295248]
Denoising diffusion models (DDMs) have gained recent traction in medical image translation given improved training stability over adversarial models.
We propose a novel self-consistent iterative diffusion bridge (SelfRDB) for improved performance in medical image translation.
Comprehensive analyses in multi-contrast MRI and MRI-CT translation indicate that SelfRDB offers superior performance against competing methods.
arXiv Detail & Related papers (2024-05-10T19:39:55Z) - Cascaded Multi-path Shortcut Diffusion Model for Medical Image Translation [26.67518950976257]
We propose a Cascade Multi-path Shortcut Diffusion Model (CMDM) for high-quality medical image translation and uncertainty estimation.
Our experimental results found that CMDM can produce high-quality translations comparable to state-of-the-art methods.
arXiv Detail & Related papers (2024-04-06T03:02:47Z) - Training Class-Imbalanced Diffusion Model Via Overlap Optimization [55.96820607533968]
Diffusion models trained on real-world datasets often yield inferior fidelity for tail classes.
Deep generative models, including diffusion models, are biased towards classes with abundant training images.
We propose a method based on contrastive learning to minimize the overlap between distributions of synthetic images for different classes.
arXiv Detail & Related papers (2024-02-16T16:47:21Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.
This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.
We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - DiffDis: Empowering Generative Diffusion Model with Cross-Modal
Discrimination Capability [75.9781362556431]
We propose DiffDis to unify the cross-modal generative and discriminative pretraining into one single framework under the diffusion process.
We show that DiffDis outperforms single-task models on both the image generation and the image-text discriminative tasks.
arXiv Detail & Related papers (2023-08-18T05:03:48Z) - SDDM: Score-Decomposed Diffusion Models on Manifolds for Unpaired
Image-to-Image Translation [96.11061713135385]
This work presents a new score-decomposed diffusion model to explicitly optimize the tangled distributions during image generation.
We equalize the refinement parts of the score function and energy guidance, which permits multi-objective optimization on the manifold.
SDDM outperforms existing SBDM-based methods with much fewer diffusion steps on several I2I benchmarks.
arXiv Detail & Related papers (2023-08-04T06:21:57Z) - Zero-shot Medical Image Translation via Frequency-Guided Diffusion
Models [9.15810015583615]
We propose a frequency-guided diffusion model (FGDM) that employs frequency-domain filters to guide the diffusion model for structure-preserving image translation.
Based on its design, FGDM allows zero-shot learning, as it can be trained solely on the data from the target domain, and used directly for source-to-target domain translation.
FGDM outperformed the state-of-the-art methods (GAN-based, VAE-based, and diffusion-based) in metrics of Frechet Inception Distance (FID), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity
arXiv Detail & Related papers (2023-04-05T20:47:40Z) - SinDiffusion: Learning a Diffusion Model from a Single Natural Image [159.4285444680301]
We present SinDiffusion, leveraging denoising diffusion models to capture internal distribution of patches from a single natural image.
It is based on two core designs. First, SinDiffusion is trained with a single model at a single scale instead of multiple models with progressive growing of scales.
Second, we identify that a patch-level receptive field of the diffusion network is crucial and effective for capturing the image's patch statistics.
arXiv Detail & Related papers (2022-11-22T18:00:03Z) - Semantic Image Synthesis via Diffusion Models [159.4285444680301]
Denoising Diffusion Probabilistic Models (DDPMs) have achieved remarkable success in various image generation tasks.
Recent work on semantic image synthesis mainly follows the emphde facto Generative Adversarial Nets (GANs)
arXiv Detail & Related papers (2022-06-30T18:31:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.