A GAN Approach for Node Embedding in Heterogeneous Graphs Using Subgraph
Sampling
- URL: http://arxiv.org/abs/2312.06519v1
- Date: Mon, 11 Dec 2023 16:52:20 GMT
- Title: A GAN Approach for Node Embedding in Heterogeneous Graphs Using Subgraph
Sampling
- Authors: Hung Chun Hsu, Bo-Jun Wu, Ming-Yi Hong, Che Lin, Chih-Yu Wang
- Abstract summary: Our research addresses class imbalance issues in heterogeneous graphs using graph neural networks (GNNs)
We propose a novel method combining the strengths of Generative Adversarial Networks (GANs) with GNNs, creating synthetic nodes and edges that effectively balance the dataset.
- Score: 35.94125831564648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Our research addresses class imbalance issues in heterogeneous graphs using
graph neural networks (GNNs). We propose a novel method combining the strengths
of Generative Adversarial Networks (GANs) with GNNs, creating synthetic nodes
and edges that effectively balance the dataset. This approach directly targets
and rectifies imbalances at the data level. The proposed framework resolves
issues such as neglecting graph structures during data generation and creating
synthetic structures usable with GNN-based classifiers in downstream tasks. It
processes node and edge information concurrently, improving edge balance
through node augmentation and subgraph sampling. Additionally, our framework
integrates a threshold strategy, aiding in determining optimal edge thresholds
during training without time-consuming parameter adjustments. Experiments on
the Amazon and Yelp Review datasets highlight the effectiveness of the
framework we proposed, especially in minority node identification, where it
consistently outperforms baseline models across key performance metrics,
demonstrating its potential in the field.
Related papers
- Sparse Decomposition of Graph Neural Networks [20.768412002413843]
We propose an approach to reduce the number of nodes that are included during aggregation.
We achieve this through a sparse decomposition, learning to approximate node representations using a weighted sum of linearly transformed features.
We demonstrate via extensive experiments that our method outperforms other baselines designed for inference speedup.
arXiv Detail & Related papers (2024-10-25T17:52:16Z) - AdaRC: Mitigating Graph Structure Shifts during Test-Time [66.40525136929398]
Test-time adaptation (TTA) has attracted attention due to its ability to adapt a pre-trained model to a target domain without re-accessing the source domain.
We propose AdaRC, an innovative framework designed for effective and efficient adaptation to structure shifts in graphs.
arXiv Detail & Related papers (2024-10-09T15:15:40Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Neural Structured Prediction for Inductive Node Classification [29.908759584092167]
This paper studies node classification in the inductive setting, aiming to learn a model on labeled training graphs and generalize it to infer node labels on unlabeled test graphs.
We present a new approach called the Structured Proxy Network (SPN), which combines the advantages of both worlds.
arXiv Detail & Related papers (2022-04-15T15:50:27Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
We introduce the local augmentation, which enhances node features by its local subgraph structures.
Based on the local augmentation, we further design a novel framework: LA-GNN, which can apply to any GNN models in a plug-and-play manner.
arXiv Detail & Related papers (2021-09-08T18:10:08Z) - Curvature Graph Neural Network [8.477559786537919]
We introduce discrete graph curvature (the Ricci curvature) to quantify the strength of structural connection of pairwise nodes.
We propose Curvature Graph Neural Network (CGNN), which effectively improves the adaptive locality ability of GNNs.
The experimental results on synthetic datasets show that CGNN effectively exploits the topology structure information.
arXiv Detail & Related papers (2021-06-30T00:56:03Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
We propose PTDNet, a parameterized topological denoising network, to improve the robustness and generalization performance of Graph Neural Networks (GNNs)
PTDNet prunes task-irrelevant edges by penalizing the number of edges in the sparsified graph with parameterized networks.
We show that PTDNet can improve the performance of GNNs significantly and the performance gain becomes larger for more noisy datasets.
arXiv Detail & Related papers (2020-11-13T18:53:21Z) - Graph Clustering with Graph Neural Networks [5.305362965553278]
Graph Neural Networks (GNNs) have achieved state-of-the-art results on many graph analysis tasks.
Unsupervised problems on graphs, such as graph clustering, have proved more resistant to advances in GNNs.
We introduce Deep Modularity Networks (DMoN), an unsupervised pooling method inspired by the modularity measure of clustering quality.
arXiv Detail & Related papers (2020-06-30T15:30:49Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.