論文の概要: ControlNet-XS: Designing an Efficient and Effective Architecture for
Controlling Text-to-Image Diffusion Models
- arxiv url: http://arxiv.org/abs/2312.06573v1
- Date: Mon, 11 Dec 2023 17:58:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-12 14:44:55.715300
- Title: ControlNet-XS: Designing an Efficient and Effective Architecture for
Controlling Text-to-Image Diffusion Models
- Title(参考訳): ControlNet-XS:テキスト-画像拡散モデル制御のための効率的かつ効果的なアーキテクチャの設計
- Authors: Denis Zavadski, Johann-Friedrich Feiden, Carsten Rother
- Abstract要約: 一般的なアプローチは、Stable Diffusionのようなトレーニング済みの画像生成モデルと組み合わせて、ControlNetのような制御ネットワークを使用することである。
本研究では,制御ネットXSと呼ばれる新しい制御アーキテクチャを提案する。
ControlNetとは対照的に、私たちのモデルはパラメータのごく一部しか必要とせず、推論やトレーニング時間の約2倍の速度です。
- 参考スコア(独自算出の注目度): 21.379896810560282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of image synthesis has made tremendous strides forward in the last
years. Besides defining the desired output image with text-prompts, an
intuitive approach is to additionally use spatial guidance in form of an image,
such as a depth map. For this, a recent and highly popular approach is to use a
controlling network, such as ControlNet, in combination with a pre-trained
image generation model, such as Stable Diffusion. When evaluating the design of
existing controlling networks, we observe that they all suffer from the same
problem of a delay in information flowing between the generation and
controlling process. This, in turn, means that the controlling network must
have generative capabilities. In this work we propose a new controlling
architecture, called ControlNet-XS, which does not suffer from this problem,
and hence can focus on the given task of learning to control. In contrast to
ControlNet, our model needs only a fraction of parameters, and hence is about
twice as fast during inference and training time. Furthermore, the generated
images are of higher quality and the control is of higher fidelity. All code
and pre-trained models will be made publicly available.
- Abstract(参考訳): 画像合成の分野はここ数年で飛躍的な進歩を遂げている。
テキストプロンプトで所望の出力画像を定義することに加えて、直感的なアプローチは深度マップのような画像の形で空間的ガイダンスを追加することである。
このため、最近の非常に人気のあるアプローチは、Stable Diffusionのようなトレーニング済みの画像生成モデルと組み合わせて、ControlNetのような制御ネットワークを使用することである。
既存の制御ネットワークの設計を評価する際に、生成と制御プロセスの間を流れる情報の遅延と同じ問題に悩まされていることを観察する。
これは、制御ネットワークが生成能力を持つ必要があることを意味する。
本研究では,この問題に苦しむことなく,制御する学習のタスクに集中できる新しい制御アーキテクチャ,controlnet-xsを提案する。
ControlNetとは対照的に、私たちのモデルはパラメータのごく一部しか必要とせず、推論やトレーニング時間の約2倍高速です。
さらに、生成された画像は高品質であり、制御は忠実度が高い。
すべてのコードと事前訓練されたモデルは公開されます。
関連論文リスト
- ControlAR: Controllable Image Generation with Autoregressive Models [40.74890550081335]
自動回帰画像生成モデルに空間制御を統合するための効率的なフレームワークであるControlARを導入する。
ControlARは条件付き復号法を利用して、制御と画像トークンの融合によって条件付けられた次の画像トークンを生成する。
その結果,コントロールARは従来の制御可能な拡散モデルを上回ることが示唆された。
論文 参考訳(メタデータ) (2024-10-03T17:28:07Z) - AnyControl: Create Your Artwork with Versatile Control on Text-to-Image Generation [24.07613591217345]
言語制御は効果的なコンテンツ生成を可能にするが、画像生成のきめ細かい制御に苦慮する。
AnyControlは、生成プロセスのガイドとして、統一されたマルチモーダル埋め込みを抽出する、新しいマルチControlフレームワークを開発している。
このアプローチは、ユーザ入力の全体的理解を可能にし、汎用的な制御信号の下で高品質で忠実な結果を生成する。
論文 参考訳(メタデータ) (2024-06-27T07:40:59Z) - Ctrl-Adapter: An Efficient and Versatile Framework for Adapting Diverse Controls to Any Diffusion Model [62.51232333352754]
Ctrl-Adapterは、事前訓練されたコントロールネットの適応を通じて、任意の画像/ビデオ拡散モデルに多様なコントロールを追加する。
6つの多様なU-Net/DiTベースの画像/ビデオ拡散モデルにより、Ctrl-AdapterはCOCO上の事前訓練されたコントロールネットのパフォーマンスと一致する。
論文 参考訳(メタデータ) (2024-04-15T17:45:36Z) - Layout-to-Image Generation with Localized Descriptions using ControlNet
with Cross-Attention Control [20.533597112330018]
レイアウト・ツー・イメージタスクにおけるControlNetの限界を示し、ローカライズされた記述を使えるようにする。
制御性を改善しつつ画像品質を維持するために,新しいクロスアテンション操作法を開発した。
論文 参考訳(メタデータ) (2024-02-20T22:15:13Z) - Fine-grained Controllable Video Generation via Object Appearance and
Context [74.23066823064575]
細粒度制御可能なビデオ生成法(FACTOR)を提案する。
FACTORは、オブジェクトの位置とカテゴリを含む、オブジェクトの外観とコンテキストを制御することを目的としている。
本手法は,オブジェクトの外観を微調整せずに制御し,オブジェクトごとの最適化作業を省く。
論文 参考訳(メタデータ) (2023-12-05T17:47:33Z) - Readout Guidance: Learning Control from Diffusion Features [96.22155562120231]
本稿では,学習信号を用いたテキスト・画像拡散モデル制御手法であるReadout Guidanceを提案する。
Readout Guidanceはリードアウトヘッドを使用し、トレーニング済みの凍結拡散モデルの特徴から信号を取り出すために訓練された軽量ネットワークである。
これらの読み出しは、ポーズ、深さ、エッジなどのシングルイメージ特性や、対応性や外観類似性といった複数の画像に関連する高次特性を符号化することができる。
論文 参考訳(メタデータ) (2023-12-04T18:59:32Z) - Cocktail: Mixing Multi-Modality Controls for Text-Conditional Image
Generation [79.8881514424969]
テキスト条件拡散モデルは多種多様な内容の高忠実度画像を生成することができる。
しかし、言語表現はしばしば、想定された目的像の曖昧な記述を示す。
様々なモダリティを1つの埋め込みに混ぜるパイプラインであるCocktailを提案する。
論文 参考訳(メタデータ) (2023-06-01T17:55:32Z) - Uni-ControlNet: All-in-One Control to Text-to-Image Diffusion Models [82.19740045010435]
ローカルコントロールとグローバルコントロールの同時利用を可能にする統合フレームワークであるUni-ControlNetを紹介した。
既存の方法とは異なり、Uni-ControlNetは、凍結した事前訓練されたテキスト-画像拡散モデル上に2つのアダプタを微調整するだけでよい。
Uni-ControlNetは、制御性、生成品質、構成性の観点から、既存のメソッドよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-25T17:59:58Z) - UniControl: A Unified Diffusion Model for Controllable Visual Generation
In the Wild [166.25327094261038]
制御可能なコンディション・トゥ・イメージ(C2I)タスクのための新しい生成基盤モデルUniControlを紹介する。
UniControlは、任意の言語プロンプトを許容しながら、特定のフレームワーク内で幅広いC2Iタスクを統合する。
9つのユニークなC2Iタスクで訓練されたUniControlは、印象的なゼロショット生成能力を誇示している。
論文 参考訳(メタデータ) (2023-05-18T17:41:34Z) - Adding Conditional Control to Text-to-Image Diffusion Models [37.98427255384245]
大規模で事前訓練されたテキスト-画像拡散モデルに空間条件制御を追加するニューラルネットワークアーキテクチャであるControlNetを提案する。
ControlNetはプロダクション対応の大規模な拡散モデルをロックし、数十億のイメージで事前訓練されたディープで堅牢なエンコーディング層を強力なバックボーンとして再利用して、さまざまな条件付きコントロールを学ぶ。
論文 参考訳(メタデータ) (2023-02-10T23:12:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。