ControlNet-XS: Rethinking the Control of Text-to-Image Diffusion Models as Feedback-Control Systems
- URL: http://arxiv.org/abs/2312.06573v2
- Date: Mon, 12 Aug 2024 14:52:49 GMT
- Title: ControlNet-XS: Rethinking the Control of Text-to-Image Diffusion Models as Feedback-Control Systems
- Authors: Denis Zavadski, Johann-Friedrich Feiden, Carsten Rother,
- Abstract summary: In this work, we take an existing controlling network (ControlNet) and change the communication between the controlling network and the generation process to be of high-frequency and with large-bandwidth.
We outperform state-of-the-art approaches for pixel-level guidance, such as depth, canny-edges, and semantic segmentation, and are on a par for loose keypoint-guidance of human poses.
All code and pre-trained models will be made publicly available.
- Score: 19.02295657801464
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of image synthesis has made tremendous strides forward in the last years. Besides defining the desired output image with text-prompts, an intuitive approach is to additionally use spatial guidance in form of an image, such as a depth map. In state-of-the-art approaches, this guidance is realized by a separate controlling model that controls a pre-trained image generation network, such as a latent diffusion model. Understanding this process from a control system perspective shows that it forms a feedback-control system, where the control module receives a feedback signal from the generation process and sends a corrective signal back. When analysing existing systems, we observe that the feedback signals are timely sparse and have a small number of bits. As a consequence, there can be long delays between newly generated features and the respective corrective signals for these features. It is known that this delay is the most unwanted aspect of any control system. In this work, we take an existing controlling network (ControlNet) and change the communication between the controlling network and the generation process to be of high-frequency and with large-bandwidth. By doing so, we are able to considerably improve the quality of the generated images, as well as the fidelity of the control. Also, the controlling network needs noticeably fewer parameters and hence is about twice as fast during inference and training time. Another benefit of small-sized models is that they help to democratise our field and are likely easier to understand. We call our proposed network ControlNet-XS. When comparing with the state-of-the-art approaches, we outperform them for pixel-level guidance, such as depth, canny-edges, and semantic segmentation, and are on a par for loose keypoint-guidance of human poses. All code and pre-trained models will be made publicly available.
Related papers
- ControlAR: Controllable Image Generation with Autoregressive Models [40.74890550081335]
We introduce ControlAR, an efficient framework for integrating spatial controls into autoregressive image generation models.
ControlAR exploits the conditional decoding method to generate the next image token conditioned on the per-token fusion between control and image tokens.
Results indicate that ControlAR surpasses previous state-of-the-art controllable diffusion models.
arXiv Detail & Related papers (2024-10-03T17:28:07Z) - AnyControl: Create Your Artwork with Versatile Control on Text-to-Image Generation [24.07613591217345]
Linguistic control enables effective content creation, but struggles with fine-grained control over image generation.
AnyControl develops a novel Multi-Control framework that extracts a unified multi-modal embedding to guide the generation process.
This approach enables a holistic understanding of user inputs, and produces high-quality, faithful results under versatile control signals.
arXiv Detail & Related papers (2024-06-27T07:40:59Z) - Ctrl-Adapter: An Efficient and Versatile Framework for Adapting Diverse Controls to Any Diffusion Model [62.51232333352754]
Ctrl-Adapter adds diverse controls to any image/video diffusion model through the adaptation of pretrained ControlNets.
With six diverse U-Net/DiT-based image/video diffusion models, Ctrl-Adapter matches the performance of pretrained ControlNets on COCO.
arXiv Detail & Related papers (2024-04-15T17:45:36Z) - Layout-to-Image Generation with Localized Descriptions using ControlNet
with Cross-Attention Control [20.533597112330018]
We show the limitations of ControlNet for the layout-to-image task and enable it to use localized descriptions.
We develop a novel cross-attention manipulation method in order to maintain image quality while improving control.
arXiv Detail & Related papers (2024-02-20T22:15:13Z) - Fine-grained Controllable Video Generation via Object Appearance and
Context [74.23066823064575]
We propose fine-grained controllable video generation (FACTOR) to achieve detailed control.
FACTOR aims to control objects' appearances and context, including their location and category.
Our method achieves controllability of object appearances without finetuning, which reduces the per-subject optimization efforts for the users.
arXiv Detail & Related papers (2023-12-05T17:47:33Z) - Readout Guidance: Learning Control from Diffusion Features [96.22155562120231]
We present Readout Guidance, a method for controlling text-to-image diffusion models with learned signals.
Readout Guidance uses readout heads, lightweight networks trained to extract signals from the features of a pre-trained, frozen diffusion model at every timestep.
These readouts can encode single-image properties, such as pose, depth, and edges; or higher-order properties that relate multiple images, such as correspondence and appearance similarity.
arXiv Detail & Related papers (2023-12-04T18:59:32Z) - Cocktail: Mixing Multi-Modality Controls for Text-Conditional Image
Generation [79.8881514424969]
Text-conditional diffusion models are able to generate high-fidelity images with diverse contents.
However, linguistic representations frequently exhibit ambiguous descriptions of the envisioned objective imagery.
We propose Cocktail, a pipeline to mix various modalities into one embedding.
arXiv Detail & Related papers (2023-06-01T17:55:32Z) - Uni-ControlNet: All-in-One Control to Text-to-Image Diffusion Models [82.19740045010435]
We introduce Uni-ControlNet, a unified framework that allows for the simultaneous utilization of different local controls and global controls.
Unlike existing methods, Uni-ControlNet only requires the fine-tuning of two additional adapters upon frozen pre-trained text-to-image diffusion models.
Uni-ControlNet demonstrates its superiority over existing methods in terms of controllability, generation quality and composability.
arXiv Detail & Related papers (2023-05-25T17:59:58Z) - UniControl: A Unified Diffusion Model for Controllable Visual Generation
In the Wild [166.25327094261038]
We introduce UniControl, a new generative foundation model for controllable condition-to-image (C2I) tasks.
UniControl consolidates a wide array of C2I tasks within a singular framework, while still allowing for arbitrary language prompts.
trained on nine unique C2I tasks, UniControl demonstrates impressive zero-shot generation abilities.
arXiv Detail & Related papers (2023-05-18T17:41:34Z) - Adding Conditional Control to Text-to-Image Diffusion Models [37.98427255384245]
We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models.
ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls.
arXiv Detail & Related papers (2023-02-10T23:12:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.