Ctrl-Adapter: An Efficient and Versatile Framework for Adapting Diverse Controls to Any Diffusion Model
- URL: http://arxiv.org/abs/2404.09967v2
- Date: Fri, 24 May 2024 16:29:38 GMT
- Title: Ctrl-Adapter: An Efficient and Versatile Framework for Adapting Diverse Controls to Any Diffusion Model
- Authors: Han Lin, Jaemin Cho, Abhay Zala, Mohit Bansal,
- Abstract summary: Ctrl-Adapter adds diverse controls to any image/video diffusion model through the adaptation of pretrained ControlNets.
With six diverse U-Net/DiT-based image/video diffusion models, Ctrl-Adapter matches the performance of pretrained ControlNets on COCO.
- Score: 62.51232333352754
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: ControlNets are widely used for adding spatial control to text-to-image diffusion models with different conditions, such as depth maps, scribbles/sketches, and human poses. However, when it comes to controllable video generation, ControlNets cannot be directly integrated into new backbones due to feature space mismatches, and training ControlNets for new backbones can be a significant burden for many users. Furthermore, applying ControlNets independently to different frames cannot effectively maintain object temporal consistency. To address these challenges, we introduce Ctrl-Adapter, an efficient and versatile framework that adds diverse controls to any image/video diffusion model through the adaptation of pretrained ControlNets. Ctrl-Adapter offers strong and diverse capabilities, including image and video control, sparse-frame video control, fine-grained patch-level multi-condition control (via an MoE router), zero-shot adaptation to unseen conditions, and supports a variety of downstream tasks beyond spatial control, including video editing, video style transfer, and text-guided motion control. With six diverse U-Net/DiT-based image/video diffusion models (SDXL, PixArt-$\alpha$, I2VGen-XL, SVD, Latte, Hotshot-XL), Ctrl-Adapter matches the performance of pretrained ControlNets on COCO and achieves the state-of-the-art on DAVIS 2017 with significantly lower computation (< 10 GPU hours).
Related papers
- CtrLoRA: An Extensible and Efficient Framework for Controllable Image Generation [69.43106794519193]
We propose the CtrLoRA framework, which trains a Base ControlNet to learn the common knowledge of image-to-image generation from multiple base conditions.
Our framework reduces the learnable parameters by 90% compared to ControlNet, significantly lowering the threshold to distribute and deploy the model weights.
arXiv Detail & Related papers (2024-10-12T07:04:32Z) - EasyControl: Transfer ControlNet to Video Diffusion for Controllable Generation and Interpolation [73.80275802696815]
We propose a universal framework called EasyControl for video generation.
Our method enables users to control video generation with a single condition map.
Our model demonstrates powerful image retention ability, resulting in high FVD and IS in UCF101 and MSR-VTT.
arXiv Detail & Related papers (2024-08-23T11:48:29Z) - ControlNeXt: Powerful and Efficient Control for Image and Video Generation [59.62289489036722]
We propose ControlNeXt: a powerful and efficient method for controllable image and video generation.
We first design a more straightforward and efficient architecture, replacing heavy additional branches with minimal additional cost.
As for training, we reduce up to 90% of learnable parameters compared to the alternatives.
arXiv Detail & Related papers (2024-08-12T11:41:18Z) - VD3D: Taming Large Video Diffusion Transformers for 3D Camera Control [74.5434726968562]
We tame transformers video for 3D camera control using a ControlNet-like conditioning mechanism based on Plucker coordinates.
Our work is the first to enable camera control for transformer-based video diffusion models.
arXiv Detail & Related papers (2024-07-17T17:59:05Z) - Uni-ControlNet: All-in-One Control to Text-to-Image Diffusion Models [82.19740045010435]
We introduce Uni-ControlNet, a unified framework that allows for the simultaneous utilization of different local controls and global controls.
Unlike existing methods, Uni-ControlNet only requires the fine-tuning of two additional adapters upon frozen pre-trained text-to-image diffusion models.
Uni-ControlNet demonstrates its superiority over existing methods in terms of controllability, generation quality and composability.
arXiv Detail & Related papers (2023-05-25T17:59:58Z) - Adding Conditional Control to Text-to-Image Diffusion Models [37.98427255384245]
We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models.
ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls.
arXiv Detail & Related papers (2023-02-10T23:12:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.