論文の概要: Robo360: A 3D Omnispective Multi-Material Robotic Manipulation Dataset
- arxiv url: http://arxiv.org/abs/2312.06686v1
- Date: Sat, 9 Dec 2023 09:12:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-13 18:58:23.707422
- Title: Robo360: A 3D Omnispective Multi-Material Robotic Manipulation Dataset
- Title(参考訳): Robo360:3D一眼ロボットマニピュレーションデータセット
- Authors: Litian Liang, Liuyu Bian, Caiwei Xiao, Jialin Zhang, Linghao Chen,
Isabella Liu, Fanbo Xiang, Zhiao Huang, Hao Su
- Abstract要約: 近年の3Dアルゴリズムの活用への関心は、ロボットの知覚と身体的理解の進歩につながっている。
我々は、ロボット操作と密集したビューカバレッジを備えたデータセットであるRobo360を提示する。
3Dとロボット制御における物理世界理解の交差点では、Robo360が新たな研究の道を開くことを願っている。
- 参考スコア(独自算出の注目度): 26.845899347446807
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building robots that can automate labor-intensive tasks has long been the
core motivation behind the advancements in computer vision and the robotics
community. Recent interest in leveraging 3D algorithms, particularly neural
fields, has led to advancements in robot perception and physical understanding
in manipulation scenarios. However, the real world's complexity poses
significant challenges. To tackle these challenges, we present Robo360, a
dataset that features robotic manipulation with a dense view coverage, which
enables high-quality 3D neural representation learning, and a diverse set of
objects with various physical and optical properties and facilitates research
in various object manipulation and physical world modeling tasks. We confirm
the effectiveness of our dataset using existing dynamic NeRF and evaluate its
potential in learning multi-view policies. We hope that Robo360 can open new
research directions yet to be explored at the intersection of understanding the
physical world in 3D and robot control.
- Abstract(参考訳): 労働集約的なタスクを自動化できるロボットの構築は、コンピュータビジョンとロボティクスのコミュニティの進歩の中核的な動機だった。
近年の3Dアルゴリズム,特にニューラルフィールドの活用に対する関心は,ロボット認識の進歩と操作シナリオにおける物理的理解につながっている。
しかし、現実世界の複雑さは大きな課題をもたらす。
これらの課題に対処するために,高画質な3次元ニューラル表現学習が可能なロボット操作と,様々な物理的・光学的特性を持つ多種多様なオブジェクトの集合を備え,様々なオブジェクト操作や物理世界モデリングタスクの研究を容易にするRobo360を提案する。
我々は、既存の動的NeRFを用いてデータセットの有効性を確認し、マルチビューポリシーの学習におけるその可能性を評価する。
robo360は3dとロボット制御の物理的な世界を理解するための、新しい研究の道を開くことを願っている。
関連論文リスト
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
本稿では,インターネット規模のセマンティック知識を継承するために,事前学習された視覚言語モデル(VLM)上に構築された新しいフローマッチングアーキテクチャを提案する。
我々は,事前訓練後のタスクをゼロショットで実行し,人からの言語指導に追従し,微調整で新たなスキルを習得する能力の観点から,我々のモデルを評価した。
論文 参考訳(メタデータ) (2024-10-31T17:22:30Z) - RoboCasa: Large-Scale Simulation of Everyday Tasks for Generalist Robots [25.650235551519952]
本稿では,汎用ロボットを日常的に訓練するための大規模シミュレーションフレームワークであるRoboCasaを紹介する。
私たちは、150以上のオブジェクトカテゴリと数十の対話可能な家具とアプライアンスに対して、何千もの3Dアセットを提供しています。
本実験は, 大規模模倣学習のための合成ロボットデータを用いて, スケーリングの傾向を明らかにするものである。
論文 参考訳(メタデータ) (2024-06-04T17:41:31Z) - ManiFoundation Model for General-Purpose Robotic Manipulation of Contact Synthesis with Arbitrary Objects and Robots [24.035706461949715]
汎用ロボットが幅広い操作タスクをこなせるようなモデルを開発する必要がある。
本研究は,汎用ロボット操作の基礎モデルを構築するための包括的枠組みを導入する。
私たちのモデルは、平均的な成功率を約90%達成します。
論文 参考訳(メタデータ) (2024-05-11T09:18:37Z) - Teaching Unknown Objects by Leveraging Human Gaze and Augmented Reality
in Human-Robot Interaction [3.1473798197405953]
この論文は、人間-ロボットインタラクション(HRI)の文脈で未知の物体を教えることを目的としている。
視線追跡と拡張現実(Augmented Reality)を組み合わせることで、人間の教師がロボットとコミュニケーションできる強力なシナジーが生まれました。
ロボットの物体検出能力は、広範囲なデータセットで訓練された最先端の物体検出器に匹敵する性能を示した。
論文 参考訳(メタデータ) (2023-12-12T11:34:43Z) - RH20T: A Comprehensive Robotic Dataset for Learning Diverse Skills in
One-Shot [56.130215236125224]
オープンドメインでのロボット操作における重要な課題は、ロボットの多様性と一般化可能なスキルの獲得方法である。
単発模倣学習の最近の研究は、訓練されたポリシーを実証に基づく新しいタスクに移行する可能性を示唆している。
本稿では,エージェントがマルチモーダルな知覚で数百の現実世界のスキルを一般化する可能性を解き放つことを目的とする。
論文 参考訳(メタデータ) (2023-07-02T15:33:31Z) - DexArt: Benchmarking Generalizable Dexterous Manipulation with
Articulated Objects [8.195608430584073]
物理シミュレーターにおけるArticulated ObjectによるDexterous操作を含むDexArtという新しいベンチマークを提案する。
本研究の主目的は,未確認対象に対する学習方針の一般化性を評価することである。
一般化を実現するために3次元表現学習を用いた強化学習を用いる。
論文 参考訳(メタデータ) (2023-05-09T18:30:58Z) - RT-1: Robotics Transformer for Real-World Control at Scale [98.09428483862165]
我々は,有望なスケーラブルなモデル特性を示す,ロボティクストランスフォーマーと呼ばれるモデルクラスを提示する。
実世界の課題を遂行する実ロボットの大規模データ収集に基づいて,様々なモデルクラスと,データサイズ,モデルサイズ,データの多様性の関数として一般化する能力について検証した。
論文 参考訳(メタデータ) (2022-12-13T18:55:15Z) - See, Hear, and Feel: Smart Sensory Fusion for Robotic Manipulation [49.925499720323806]
視覚的、聴覚的、触覚的知覚が、ロボットが複雑な操作タスクを解くのにどのように役立つかを研究する。
私たちは、カメラで見たり、コンタクトマイクで聞いたり、視覚ベースの触覚センサーで感じるロボットシステムを構築しました。
論文 参考訳(メタデータ) (2022-12-07T18:55:53Z) - 3D Neural Scene Representations for Visuomotor Control [78.79583457239836]
我々は2次元視覚観測から動的3次元シーンのモデルを純粋に学習する。
学習した表現空間上に構築された動的モデルにより,操作課題に対するビジュモータ制御が可能となる。
論文 参考訳(メタデータ) (2021-07-08T17:49:37Z) - Learning Generalizable Robotic Reward Functions from "In-The-Wild" Human
Videos [59.58105314783289]
ドメインに依存しないビデオ識別器(DVD)は、2つのビデオが同じタスクを実行しているかどうかを判断するために識別器を訓練することによりマルチタスク報酬関数を学習する。
DVDは、人間のビデオの広いデータセットで少量のロボットデータから学習することで、一般化することができる。
DVDと視覚モデル予測制御を組み合わせることで、実際のWidowX200ロボットのロボット操作タスクを単一の人間のデモから未知の環境で解決できます。
論文 参考訳(メタデータ) (2021-03-31T05:25:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。