SIFU: Side-view Conditioned Implicit Function for Real-world Usable Clothed Human Reconstruction
- URL: http://arxiv.org/abs/2312.06704v3
- Date: Mon, 8 Apr 2024 11:24:30 GMT
- Title: SIFU: Side-view Conditioned Implicit Function for Real-world Usable Clothed Human Reconstruction
- Authors: Zechuan Zhang, Zongxin Yang, Yi Yang,
- Abstract summary: We introduce SIFU, a novel approach combining a Side-view Decoupling Transformer with a 3D Consistent Texture Refinement pipeline.
Uses SMPL-X normals as queries to effectively decouple side-view features in the process of mapping 2D features to 3D.
Our approach extends to practical applications such as 3D printing and scene building, demonstrating its broad utility in real-world scenarios.
- Score: 33.03705631101124
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Creating high-quality 3D models of clothed humans from single images for real-world applications is crucial. Despite recent advancements, accurately reconstructing humans in complex poses or with loose clothing from in-the-wild images, along with predicting textures for unseen areas, remains a significant challenge. A key limitation of previous methods is their insufficient prior guidance in transitioning from 2D to 3D and in texture prediction. In response, we introduce SIFU (Side-view Conditioned Implicit Function for Real-world Usable Clothed Human Reconstruction), a novel approach combining a Side-view Decoupling Transformer with a 3D Consistent Texture Refinement pipeline.SIFU employs a cross-attention mechanism within the transformer, using SMPL-X normals as queries to effectively decouple side-view features in the process of mapping 2D features to 3D. This method not only improves the precision of the 3D models but also their robustness, especially when SMPL-X estimates are not perfect. Our texture refinement process leverages text-to-image diffusion-based prior to generate realistic and consistent textures for invisible views. Through extensive experiments, SIFU surpasses SOTA methods in both geometry and texture reconstruction, showcasing enhanced robustness in complex scenarios and achieving an unprecedented Chamfer and P2S measurement. Our approach extends to practical applications such as 3D printing and scene building, demonstrating its broad utility in real-world scenarios. Project page https://river-zhang.github.io/SIFU-projectpage/ .
Related papers
- FAMOUS: High-Fidelity Monocular 3D Human Digitization Using View Synthesis [51.193297565630886]
The challenge of accurately inferring texture remains, particularly in obscured areas such as the back of a person in frontal-view images.
This limitation in texture prediction largely stems from the scarcity of large-scale and diverse 3D datasets.
We propose leveraging extensive 2D fashion datasets to enhance both texture and shape prediction in 3D human digitization.
arXiv Detail & Related papers (2024-10-13T01:25:05Z) - Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
3D object generation from a single image involves estimating the full 3D geometry and texture of unseen views from an unposed RGB image captured in the wild.
Recent advancements in 3D object generation have introduced techniques that reconstruct an object's 3D shape and texture.
We propose bridging the gap between 2D and 3D diffusion models to address this limitation.
arXiv Detail & Related papers (2024-10-12T10:14:11Z) - TexFusion: Synthesizing 3D Textures with Text-Guided Image Diffusion
Models [77.85129451435704]
We present a new method to synthesize textures for 3D, using large-scale-guided image diffusion models.
Specifically, we leverage latent diffusion models, apply the set denoising model and aggregate denoising text map.
arXiv Detail & Related papers (2023-10-20T19:15:29Z) - Magic123: One Image to High-Quality 3D Object Generation Using Both 2D
and 3D Diffusion Priors [104.79392615848109]
We present Magic123, a two-stage coarse-to-fine approach for high-quality, textured 3D meshes from a single unposed image.
In the first stage, we optimize a neural radiance field to produce a coarse geometry.
In the second stage, we adopt a memory-efficient differentiable mesh representation to yield a high-resolution mesh with a visually appealing texture.
arXiv Detail & Related papers (2023-06-30T17:59:08Z) - Make-It-3D: High-Fidelity 3D Creation from A Single Image with Diffusion
Prior [36.40582157854088]
In this work, we investigate the problem of creating high-fidelity 3D content from only a single image.
We leverage prior knowledge from a well-trained 2D diffusion model to act as 3D-aware supervision for 3D creation.
Our method presents the first attempt to achieve high-quality 3D creation from a single image for general objects and enables various applications such as text-to-3D creation and texture editing.
arXiv Detail & Related papers (2023-03-24T17:54:22Z) - Self-Supervised Geometry-Aware Encoder for Style-Based 3D GAN Inversion [115.82306502822412]
StyleGAN has achieved great progress in 2D face reconstruction and semantic editing via image inversion and latent editing.
A corresponding generic 3D GAN inversion framework is still missing, limiting the applications of 3D face reconstruction and semantic editing.
We study the challenging problem of 3D GAN inversion where a latent code is predicted given a single face image to faithfully recover its 3D shapes and detailed textures.
arXiv Detail & Related papers (2022-12-14T18:49:50Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
We present a high-fidelity 3D generative adversarial network (GAN) inversion framework that can synthesize photo-realistic novel views.
Our approach enables high-fidelity 3D rendering from a single image, which is promising for various applications of AI-generated 3D content.
arXiv Detail & Related papers (2022-11-28T18:59:52Z) - Fine Detailed Texture Learning for 3D Meshes with Generative Models [33.42114674602613]
This paper presents a method to reconstruct high-quality textured 3D models from both multi-view and single-view images.
In the first stage, we focus on learning accurate geometry, whereas in the second stage, we focus on learning the texture with a generative adversarial network.
We demonstrate that our method achieves superior 3D textured models compared to the previous works.
arXiv Detail & Related papers (2022-03-17T14:50:52Z) - OSTeC: One-Shot Texture Completion [86.23018402732748]
We propose an unsupervised approach for one-shot 3D facial texture completion.
The proposed approach rotates an input image in 3D and fill-in the unseen regions by reconstructing the rotated image in a 2D face generator.
We frontalize the target image by projecting the completed texture into the generator.
arXiv Detail & Related papers (2020-12-30T23:53:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.