Fine Detailed Texture Learning for 3D Meshes with Generative Models
- URL: http://arxiv.org/abs/2203.09362v1
- Date: Thu, 17 Mar 2022 14:50:52 GMT
- Title: Fine Detailed Texture Learning for 3D Meshes with Generative Models
- Authors: Aysegul Dundar, Jun Gao, Andrew Tao, Bryan Catanzaro
- Abstract summary: This paper presents a method to reconstruct high-quality textured 3D models from both multi-view and single-view images.
In the first stage, we focus on learning accurate geometry, whereas in the second stage, we focus on learning the texture with a generative adversarial network.
We demonstrate that our method achieves superior 3D textured models compared to the previous works.
- Score: 33.42114674602613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a method to reconstruct high-quality textured 3D models
from both multi-view and single-view images. The reconstruction is posed as an
adaptation problem and is done progressively where in the first stage, we focus
on learning accurate geometry, whereas in the second stage, we focus on
learning the texture with a generative adversarial network. In the generative
learning pipeline, we propose two improvements. First, since the learned
textures should be spatially aligned, we propose an attention mechanism that
relies on the learnable positions of pixels. Secondly, since discriminator
receives aligned texture maps, we augment its input with a learnable embedding
which improves the feedback to the generator. We achieve significant
improvements on multi-view sequences from Tripod dataset as well as on
single-view image datasets, Pascal 3D+ and CUB. We demonstrate that our method
achieves superior 3D textured models compared to the previous works. Please
visit our web-page for 3D visuals.
Related papers
- FAMOUS: High-Fidelity Monocular 3D Human Digitization Using View Synthesis [51.193297565630886]
The challenge of accurately inferring texture remains, particularly in obscured areas such as the back of a person in frontal-view images.
This limitation in texture prediction largely stems from the scarcity of large-scale and diverse 3D datasets.
We propose leveraging extensive 2D fashion datasets to enhance both texture and shape prediction in 3D human digitization.
arXiv Detail & Related papers (2024-10-13T01:25:05Z) - ViewDiff: 3D-Consistent Image Generation with Text-to-Image Models [65.22994156658918]
We present a method that learns to generate multi-view images in a single denoising process from real-world data.
We design an autoregressive generation that renders more 3D-consistent images at any viewpoint.
arXiv Detail & Related papers (2024-03-04T07:57:05Z) - Geometry aware 3D generation from in-the-wild images in ImageNet [18.157263188192434]
We propose a method for reconstructing 3D geometry from diverse and unstructured Imagenet dataset without camera pose information.
We use an efficient triplane representation to learn 3D models from 2D images and modify the architecture of the generator backbone based on StyleGAN2.
The trained generator can produce class-conditional 3D models as well as renderings from arbitrary viewpoints.
arXiv Detail & Related papers (2024-01-31T23:06:39Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3D is a text-and-image-guided generative model for 3D avatar generation based on diffusion models.
Our framework produces topologically and structurally correct geometry and high-resolution textures.
arXiv Detail & Related papers (2023-08-18T17:55:47Z) - Magic123: One Image to High-Quality 3D Object Generation Using Both 2D
and 3D Diffusion Priors [104.79392615848109]
We present Magic123, a two-stage coarse-to-fine approach for high-quality, textured 3D meshes from a single unposed image.
In the first stage, we optimize a neural radiance field to produce a coarse geometry.
In the second stage, we adopt a memory-efficient differentiable mesh representation to yield a high-resolution mesh with a visually appealing texture.
arXiv Detail & Related papers (2023-06-30T17:59:08Z) - MvDeCor: Multi-view Dense Correspondence Learning for Fine-grained 3D
Segmentation [91.6658845016214]
We propose to utilize self-supervised techniques in the 2D domain for fine-grained 3D shape segmentation tasks.
We render a 3D shape from multiple views, and set up a dense correspondence learning task within the contrastive learning framework.
As a result, the learned 2D representations are view-invariant and geometrically consistent.
arXiv Detail & Related papers (2022-08-18T00:48:15Z) - Deep Hybrid Self-Prior for Full 3D Mesh Generation [57.78562932397173]
We propose to exploit a novel hybrid 2D-3D self-prior in deep neural networks to significantly improve the geometry quality.
In particular, we first generate an initial mesh using a 3D convolutional neural network with 3D self-prior, and then encode both 3D information and color information in the 2D UV atlas.
Our method recovers the 3D textured mesh model of high quality from sparse input, and outperforms the state-of-the-art methods in terms of both the geometry and texture quality.
arXiv Detail & Related papers (2021-08-18T07:44:21Z) - Using Adaptive Gradient for Texture Learning in Single-View 3D
Reconstruction [0.0]
Learning-based approaches for 3D model reconstruction have attracted attention owing to its modern applications.
We present a novel sampling algorithm by optimizing the gradient of predicted coordinates based on the variance on the sampling image.
We also adopt Frechet Inception Distance (FID) to form a loss function in learning, which helps bridging the gap between rendered images and input images.
arXiv Detail & Related papers (2021-04-29T07:52:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.