論文の概要: Neutral Editing Framework for Diffusion-based Video Editing
- arxiv url: http://arxiv.org/abs/2312.06708v1
- Date: Sun, 10 Dec 2023 16:28:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-13 18:47:12.317740
- Title: Neutral Editing Framework for Diffusion-based Video Editing
- Title(参考訳): 拡散型映像編集のための中性編集フレームワーク
- Authors: Sunjae Yoon, Gwanhyeong Koo, Ji Woo Hong, Chang D. Yoo
- Abstract要約: 本稿では,複雑な非剛性編集を可能にするニュートラル編集(NeuEdit)フレームワークを提案する。
NeuEditは、拡散ベースの編集システムのチューニング編集プロセスを強化する「中立化」の概念を導入している。
多数のビデオの実験は、NeuEditフレームワークの適応性と有効性を示している。
- 参考スコア(独自算出の注目度): 24.370584544151424
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-conditioned image editing has succeeded in various types of editing
based on a diffusion framework. Unfortunately, this success did not carry over
to a video, which continues to be challenging. Existing video editing systems
are still limited to rigid-type editing such as style transfer and object
overlay. To this end, this paper proposes Neutral Editing (NeuEdit) framework
to enable complex non-rigid editing by changing the motion of a person/object
in a video, which has never been attempted before. NeuEdit introduces a concept
of `neutralization' that enhances a tuning-editing process of diffusion-based
editing systems in a model-agnostic manner by leveraging input video and text
without any other auxiliary aids (e.g., visual masks, video captions).
Extensive experiments on numerous videos demonstrate adaptability and
effectiveness of the NeuEdit framework. The website of our work is available
here: https://neuedit.github.io
- Abstract(参考訳): テキスト条件付き画像編集は拡散フレームワークに基づく様々な種類の編集に成功している。
残念なことに、この成功はビデオに受け継がれず、今も挑戦を続けている。
既存のビデオ編集システムはまだスタイル転送やオブジェクトオーバーレイのような剛体型編集に限られている。
そこで本稿では,映像中の人物・物体の動きを変えることによって,複雑な非剛性編集を可能にするニュートラル編集(NeuEdit)フレームワークを提案する。
NeuEditは「ニュートラライゼーション」という概念を導入し、他の補助補助具(例えば、視覚マスク、ビデオキャプション)を使わずに、入力ビデオとテキストをモデルに依存しない方法で拡散ベースの編集システムのチューニング編集プロセスを強化する。
多数のビデオに対する大規模な実験は、NeuEditフレームワークの適応性と有効性を示している。
私たちの仕事のwebサイトはここで入手できる。 https://neuedit.github.io
関連論文リスト
- GenVideo: One-shot Target-image and Shape Aware Video Editing using T2I Diffusion Models [2.362412515574206]
ターゲット画像認識型T2Iモデルを利用した動画編集のためのGenVideoを提案する。
提案手法は,編集の時間的一貫性を維持しつつ,形状や大きさの異なる対象オブジェクトで編集を処理する。
論文 参考訳(メタデータ) (2024-04-18T23:25:27Z) - UniEdit: A Unified Tuning-Free Framework for Video Motion and Appearance Editing [28.140945021777878]
ビデオモーションと外観編集の両方をサポートする、チューニング不要のフレームワークであるUniEditを提示する。
映像コンテンツを保存しながら動きの編集を実現するため,補助的な動き参照と再構成のブランチを導入する。
得られた特徴は、時間的および空間的自己注意層を介して、主編集経路に注入される。
論文 参考訳(メタデータ) (2024-02-20T17:52:12Z) - DiffEditor: Boosting Accuracy and Flexibility on Diffusion-based Image
Editing [66.43179841884098]
大規模テキスト・ツー・イメージ(T2I)拡散モデルは、ここ数年で画像生成に革命をもたらした。
既存の拡散型画像編集における2つの弱点を正すためにDiffEditorを提案する。
本手法は,様々な精細な画像編集タスクにおいて,最先端の性能を効率的に達成することができる。
論文 参考訳(メタデータ) (2024-02-04T18:50:29Z) - DiffusionAtlas: High-Fidelity Consistent Diffusion Video Editing [27.014978053413788]
本稿では,拡散型ビデオ編集フレームワークであるDiffusionAtlasについて述べる。
本手法は,視覚時間拡散モデルを用いて拡散アトラス上で直接オブジェクトを編集し,フレーム間のコヒーレントなオブジェクト識別を保証する。
論文 参考訳(メタデータ) (2023-12-05T23:40:30Z) - MotionEditor: Editing Video Motion via Content-Aware Diffusion [96.825431998349]
MotionEditorはビデオモーション編集のための拡散モデルである。
新たなコンテンツ対応モーションアダプタをControlNetに組み込んで、時間的モーション対応をキャプチャする。
論文 参考訳(メタデータ) (2023-11-30T18:59:33Z) - Editing 3D Scenes via Text Prompts without Retraining [80.57814031701744]
DN2Nはテキスト駆動編集方式であり、普遍的な編集機能を備えたNeRFモデルの直接取得を可能にする。
本手法では,2次元画像のテキストベース編集モデルを用いて3次元シーン画像の編集を行う。
本手法は,外観編集,天気変化,材質変化,スタイル伝達など,複数種類の編集を行う。
論文 参考訳(メタデータ) (2023-09-10T02:31:50Z) - MagicProp: Diffusion-based Video Editing via Motion-aware Appearance
Propagation [74.32046206403177]
MagicPropは、ビデオ編集プロセスを、外観編集とモーション対応の外観伝搬という2つのステージに分割する。
第一段階では、MagicPropは入力ビデオから単一のフレームを選択し、フレームの内容やスタイルを変更するために画像編集技術を適用する。
第2段階では、MagicPropは編集されたフレームを外観参照として使用し、自動回帰レンダリングアプローチを使用して残りのフレームを生成する。
論文 参考訳(メタデータ) (2023-09-02T11:13:29Z) - MagicEdit: High-Fidelity and Temporally Coherent Video Editing [70.55750617502696]
MagicEditは、テキスト誘導ビデオ編集タスクの驚くほどシンプルで効果的なソリューションです。
トレーニング中,コンテンツ,構造,動作信号の学習を明示的に切り離すことで,高忠実で時間的に一貫した映像翻訳を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-08-28T17:56:22Z) - StableVideo: Text-driven Consistency-aware Diffusion Video Editing [24.50933856309234]
拡散に基づく手法は、リアルな画像やビデオを生成することができるが、ビデオ内の既存のオブジェクトを編集するのに苦労し、その外観は時間の経過とともに保たれる。
本稿では、既存のテキスト駆動拡散モデルへの時間的依存を導入し、編集対象に対して一貫した外観を生成する。
我々は,この機構,すなわちStableVideoに基づくテキスト駆動のビデオ編集フレームワークを構築し,一貫性を意識したビデオ編集を実現する。
論文 参考訳(メタデータ) (2023-08-18T14:39:16Z) - InFusion: Inject and Attention Fusion for Multi Concept Zero-Shot
Text-based Video Editing [27.661609140918916]
InFusionはゼロショットテキストベースのビデオ編集のためのフレームワークである。
編集プロンプトで言及されているさまざまな概念に対する画素レベルの制御による複数の概念の編集をサポートする。
私たちのフレームワークは、トレーニングを必要としないため、編集のためのワンショットチューニングモデルの安価な代替品です。
論文 参考訳(メタデータ) (2023-07-22T17:05:47Z) - Edit-A-Video: Single Video Editing with Object-Aware Consistency [49.43316939996227]
本稿では,事前訓練されたTTIモデルと単一のテキスト,ビデオ>ペアのみを付与したビデオ編集フレームワークを提案する。
本フレームワークは,(1)時間モジュールチューニングを付加して2Dモデルを3Dモデルに膨らませること,(2)原動画をノイズに反転させ,対象のテキストプロンプトとアテンションマップインジェクションで編集すること,の2段階からなる。
各種のテキスト・ビデオに対して広範な実験結果を示し,背景整合性,テキストアライメント,ビデオ編集品質の点で,ベースラインに比べて提案手法の優位性を示す。
論文 参考訳(メタデータ) (2023-03-14T14:35:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。