DiffCast: A Unified Framework via Residual Diffusion for Precipitation Nowcasting
- URL: http://arxiv.org/abs/2312.06734v2
- Date: Tue, 26 Mar 2024 03:52:48 GMT
- Title: DiffCast: A Unified Framework via Residual Diffusion for Precipitation Nowcasting
- Authors: Demin Yu, Xutao Li, Yunming Ye, Baoquan Zhang, Chuyao Luo, Kuai Dai, Rui Wang, Xunlai Chen,
- Abstract summary: Precipitation nowcasting is an important task to predict the radar echoes sequences based on current observations, which can serve both meteorological science and smart city applications.
Previous studies address the problem either from the perspectives of deterministic modeling or probabilistic modeling.
We propose to decompose and model the chaotic evolutionary precipitation systems from the perspective of global deterministic motion and local variations with residual mechanism.
- Score: 20.657502066923023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precipitation nowcasting is an important spatio-temporal prediction task to predict the radar echoes sequences based on current observations, which can serve both meteorological science and smart city applications. Due to the chaotic evolution nature of the precipitation systems, it is a very challenging problem. Previous studies address the problem either from the perspectives of deterministic modeling or probabilistic modeling. However, their predictions suffer from the blurry, high-value echoes fading away and position inaccurate issues. The root reason of these issues is that the chaotic evolutionary precipitation systems are not appropriately modeled. Inspired by the nature of the systems, we propose to decompose and model them from the perspective of global deterministic motion and local stochastic variations with residual mechanism. A unified and flexible framework that can equip any type of spatio-temporal models is proposed based on residual diffusion, which effectively tackles the shortcomings of previous methods. Extensive experimental results on four publicly available radar datasets demonstrate the effectiveness and superiority of the proposed framework, compared to state-of-the-art techniques. Our code is publicly available at https://github.com/DeminYu98/DiffCast.
Related papers
- PostCast: Generalizable Postprocessing for Precipitation Nowcasting via Unsupervised Blurriness Modeling [85.56969895866243]
We propose an unsupervised postprocessing method to eliminate the blurriness without the requirement of training with the pairs of blurry predictions and corresponding ground truth.
A zero-shot blur kernel estimation mechanism and an auto-scale denoise guidance strategy are introduced to adapt the unconditional correlations to any blurriness modes.
arXiv Detail & Related papers (2024-10-08T08:38:23Z) - ADM: Accelerated Diffusion Model via Estimated Priors for Robust Motion Prediction under Uncertainties [6.865435680843742]
We propose a novel diffusion-based, acceleratable framework that adeptly predicts future trajectories of agents with enhanced resistance to noise.
Our method meets the rigorous real-time operational standards essential for autonomous vehicles.
It achieves significant improvement in multi-agent motion prediction on the Argoverse 1 motion forecasting dataset.
arXiv Detail & Related papers (2024-05-01T18:16:55Z) - CasCast: Skillful High-resolution Precipitation Nowcasting via Cascaded
Modelling [93.65319031345197]
We propose CasCast, a cascaded framework composed of a deterministic and a probabilistic part to decouple predictions for mesoscale precipitation distributions and small-scale patterns.
CasCast significantly surpasses the baseline (up to +91.8%) for regional extreme-precipitation nowcasting.
arXiv Detail & Related papers (2024-02-06T08:30:47Z) - A Practical Probabilistic Benchmark for AI Weather Models [0.8278356279004184]
We show that two leading AI weather models, i.e. GraphCast and Pangu, are tied on the probabilistic CRPS metric.
We also reveal how multiple time-step loss functions, which many data-driven weather models have employed, are counter-productive.
arXiv Detail & Related papers (2024-01-27T05:53:16Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - PRISM: Probabilistic Real-Time Inference in Spatial World Models [52.878769723544615]
PRISM is a method for real-time filtering in a probabilistic generative model of agent motion and visual perception.
The proposed solution runs at 10Hz real-time and is similarly accurate to state-of-the-art SLAM in small to medium-sized indoor environments.
arXiv Detail & Related papers (2022-12-06T13:59:06Z) - A Generative Deep Learning Approach to Stochastic Downscaling of
Precipitation Forecasts [0.5906031288935515]
Generative adversarial networks (GANs) have been demonstrated by the computer vision community to be successful at super-resolution problems.
We show that GANs and VAE-GANs can match the statistical properties of state-of-the-art pointwise post-processing methods whilst creating high-resolution, spatially coherent precipitation maps.
arXiv Detail & Related papers (2022-04-05T07:19:42Z) - Seamless lightning nowcasting with recurrent-convolutional deep learning [2.175391729845306]
A deep learning model is presented to nowcast the occurrence of lightning at a five-minute time resolution 60 minutes into the future.
The model is based on a recurrent-contemporalal architecture that allows it to recognize and predict the development of convection.
The predictions are performed on a stationary grid, without use of storm object detection and tracking.
arXiv Detail & Related papers (2022-03-15T12:54:17Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Probabilistic solution of chaotic dynamical system inverse problems
using Bayesian Artificial Neural Networks [0.0]
Inverse problems for chaotic systems are numerically challenging.
Small perturbations in model parameters can cause very large changes in estimated forward trajectories.
Bizarre Artificial Neural Networks can be used to simultaneously fit a model and estimate model parameter uncertainty.
arXiv Detail & Related papers (2020-05-26T20:35:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.