Seamless lightning nowcasting with recurrent-convolutional deep learning
- URL: http://arxiv.org/abs/2203.10114v1
- Date: Tue, 15 Mar 2022 12:54:17 GMT
- Title: Seamless lightning nowcasting with recurrent-convolutional deep learning
- Authors: Jussi Leinonen, Ulrich Hamann, Urs Germann
- Abstract summary: A deep learning model is presented to nowcast the occurrence of lightning at a five-minute time resolution 60 minutes into the future.
The model is based on a recurrent-contemporalal architecture that allows it to recognize and predict the development of convection.
The predictions are performed on a stationary grid, without use of storm object detection and tracking.
- Score: 2.175391729845306
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A deep learning model is presented to nowcast the occurrence of lightning at
a five-minute time resolution 60 minutes into the future. The model is based on
a recurrent-convolutional architecture that allows it to recognize and predict
the spatiotemporal development of convection, including the motion, growth and
decay of thunderstorm cells. The predictions are performed on a stationary
grid, without the use of storm object detection and tracking. The input data,
collected from an area in and surrounding Switzerland, comprise ground-based
radar data, visible/infrared satellite data and derived cloud products,
lightning detection, numerical weather prediction and digital elevation model
data. We analyze different alternative loss functions, class weighting
strategies and model features, providing guidelines for future studies to
select loss functions optimally and to properly calibrate the probabilistic
predictions of their model. Based on these analyses, we use focal loss in this
study, but conclude that it only provides a small benefit over cross entropy,
which is a viable option if recalibration of the model is not practical.
Related papers
- GPTCast: a weather language model for precipitation nowcasting [0.0]
GPTCast is a generative deep-learning method for ensemble nowcast of radar-based precipitation.
We employ a GPT model as a forecaster to learn precipitation dynamics using tokenized radar images.
arXiv Detail & Related papers (2024-07-02T09:25:58Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - A case study of spatiotemporal forecasting techniques for weather forecasting [4.347494885647007]
The correlations of real-world processes aretemporal, and the data generated by them exhibits both spatial and temporal evolution.
Time series-based models are a viable alternative to numerical forecasts.
We show that decompositiontemporal prediction models reduced computational costs while improving accuracy.
arXiv Detail & Related papers (2022-09-29T13:47:02Z) - Long-term hail risk assessment with deep neural networks [0.0]
Hail risk assessment is necessary to estimate and reduce damage to crops, orchards, and infrastructure.
There are no machine learning models for data-driven forecasting of changes in hail frequency for a given area.
This study compares two approaches and introduces a model suitable for the task of forecasting changes in hail frequency for ongoing decades.
arXiv Detail & Related papers (2022-08-31T18:24:39Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
We show that it is possible to produce an accurate precipitation nowcast using a data-driven neural network approach.
We evaluate our approaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary images of cloud coverage of France.
arXiv Detail & Related papers (2020-07-08T20:33:10Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z) - Convolutional Neural Networks applied to sky images for short-term solar
irradiance forecasting [0.0]
This work presents preliminary results on the application of deep Convolutional Neural Networks for 2 to 20 min irradiance forecasting.
We evaluate the models on a set of irradiance measurements and corresponding sky images collected in Palaiseau (France) over 8 months with a temporal resolution of 2 min.
arXiv Detail & Related papers (2020-05-22T15:57:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.